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Price Signals
I Prices can be viewed as signals of the form (e.g. Grossman and

Stiglitz (1980)):

Price = Fundamental Value + Noise

Pt = Ebitt+x + εt

̂price info = R2

Conceptual and practical challenges:

I 1. What is the fundamental value? (which proxy, horizon,..)

I 2. Earnings impose a low frequency on regressions, which thus speak
to long term, low frequency information, as opposed to rapid changes
in info flow.
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This paper

⇒ Main idea: Move away from 1. earnings data and 2. regressions.

I 1. We proxy for noise instead of fundamental value (Dessaint et al.,
2018; Honkanen and Schmidt, 2021).

I Using large mutual fund outflows.
I MFFlow measures the ”intensity” at which a stock is fire-sold in a

given month (Edmans et al., 2012; Wardlaw, 2020).
I MFFlow is monthly and horizon-independent .

Price = Fundamental Value + Noise
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This paper

⇒ Main idea: Move away from 1. earnings data and 2. regressions.

I 2. We use MFFlow to identify (presumed) non-fundamental price
shocks.

I Each month, we use MFFlow to collect a subset of stocks that fall in
the lowest decile of the cross-sectional MFFlow distribution.

I Form portfolios of shocked stocks and calculate the CAR after the
shock.
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Recovery from Shocks

0 5 10 15 20 25 30

-0.02

-0.01

0 1 year

months

CA
AR

figure 2. CAARs (panel approach).
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Learning from the price drop

I Nonfundamental shocks are incompletely observable.
I Outflows are not disclosed for some time.
I MFFlow is noisy.

I This creates a situation in which acquiring information plays a key
role for investors.

⇒ [...] Over time, the conditional probability that the price drop was
due to the arrival of adverse private information would decline and the
price would recover in expectation [...] a suitable specialization of the
neoclassical model of He and Wang (1995) could be used to analyze
price dynamics in this setting (Duffie, 2010).
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a stock pays F̃

Total number of shares of stock m̃t available:
dm̃t = τ

−1/2
m dBm,t , m̃0 ∼N (0, τ−1m,0)

shock

Each agent i has CARA=γ utility over W̃ i
T :

E
[
−e−γW i

T
∣∣∣F i

t

]Each agent i has CARA=γ utility over W̃ i
T :

E
[
−e−γW i

T
∣∣∣F i

t

]
public + private info

We define φt as the private information flow, which corresponds
to the cross-sectional average number of private signals.
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The model’s key insight for price informativeness

Theorem 1 In equilibrium, price informativeness at time t is (Formula A):

τ c
t = τF + τm

γ2

∫ t

0

(dφu
du

)2
du
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Theorem 1 In equilibrium, price informativeness at time t is (Formula A):

τ c
t = τF + τm

γ2

∫ t

0

(dφu
du

)2
du

Main message: The speed at which information flows from prices is
proportional to the square of the speed at which private information
accumulates.

6/11



The model’s key insight for price informativeness

Theorem 1 In equilibrium, price informativeness at time t is (Formula A):

τ c
t = τF + τm

γ2

∫ t

0

(dφu
du

)2
du

⇒ Therefore, the task of recovering the flow of price informativeness is
one of recovering the flow of private information, (φt)t>0, and the three
remaining parameters:

Θ≡
(

τm
γ2 τF φ0

)
.
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Recovering the Shape of Learning from Prices

1.) Recovering Private Information Flow φt :

I The diffusion of CAR (σt) in equilibrium is a function of φ′t :

σt ≡
√
d〈Pt〉/dt = a−1/2 · τ−1t ·

(
1+a ·φ′t

)
.
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I The diffusion of CAR (σt),which is a function of φ′t and is in
equilibrium given by:

σt ≡
√
d〈Pt〉/dt︸ ︷︷ ︸

TAQ-based
√
QV

= a−1/2 · τ−1t ·
(
1+a ·φ′t

)︸ ︷︷ ︸
model-implied

√
QV

.

I Then, differentiate and solve for φt (formula B):

a ·φt(Θ) = c−b+
∫ t

0

 exp
(
−
∫ s
0 σu/a1/2 du

)
σs/a1/2

1/c−
∫ s
0 exp

(
−
∫ v
0 σu/a1/2 du

)
σ2v/adv

−1

 ds
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Maximum Likelihood Estimation (MLE)

2.) Recovering model parameters Θ with MLE

I We adopt the view of the empiricist who only learns from the history
of prices.

I And let her predict what the next CAR datapoint will be,
µn·∆|(n−1)·∆ ≡ E[Pn·∆|F c

(n−1)·∆], with error variance, σ2n·∆ ·∆.
I The resulting log-likelihood is given by the following expression:

LT ≡−1
2
∑N

n=1

(
log(2 ·π) + log(σ2n·∆ ·∆)−

(
Pn·∆−µn·∆|(n−1)·∆

σ(n−1)·∆
√

∆

)2
)
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Maximum Likelihood Estimation

2.) Recovering model parameters Θ with MLE

I We adopt the view of the empiricist who only learns from the history
of prices.

I And let her predict what the next CAR datapoint will be,
µn·∆|(n−1)·∆ ≡ E[Pn·∆|F c

(n−1)·∆], with error variance,
Σn·∆|(n−1)·∆ ≡ Var[Pn·∆|F c

(n−1)·∆]≈ σ2n·∆ ·∆
I The resulting log-likelihood is given by the following expression:

maxΘ∈R3
+
LT ≡−1

2
∑N

n=1

(
log(2 ·π) + log(σ2n·∆ ·∆)−

(
Pn·∆−µn·∆|(n−1)·∆

σ(n−1)·∆
√

∆

)2
)

I Which we maximize to find the parameters which make the observed
data (CAR) most likely.
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Illustration of Methodological Steps

I Ilustrative example: Shock 231, occured on February 2016.

I Recovery period runs from March 2016 through February 2017.
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Inspiration from the fixed-income literature

We get as many curves as there are shocks (300):
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Inspiration from the fixed-income literature
We get as many curves as there are quarters (300 shocks):
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Inspiration from the fixed-income literature
We get as many curves as there are quarters (300 shocks):
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The shape of price informativeness over two decades
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figure 3. Level of price informativeness over time.
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The shape of price informativeness over two decades
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figure 4. Slope of price informativeness over time.
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The shape of price informativeness over two decades
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figure 5. Curvature of price informativeness over time.
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The shape of price informativeness in the cross-section

Size Value Liquidity⊥ Coverage⊥

Lt 1.22*** -0.27** -0.97*** -0.20

(9.22) (-2.46) (-8.13) (-1.49)

St -0.84*** 0.40*** 0.62*** 0.04

(-5.28) (3.04) (4.30) (0.33)

Ct 0.13*** -0.06 -0.10** -0.01

(2.64) (-1.54) (-2.19) (-0.41)

Table 1. Cross-sectional differences in price informativeness.
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Table 2. Cross-sectional differences in price informativeness.
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