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Price Signals
» Prices can be viewed as signals of the form (e.g. Grossman and

Stiglitz (1980)):

Price = Fundamental Value + Noise

v ¢ ¢

P, = Ebitex + e

E—— prﬂfo =R?

Conceptual and practical challenges:

» 1. What is the fundamental value? (which proxy, horizon,..)

» 2. Earnings impose a low frequency on regressions, which thus speak
to long term, low frequency information, as opposed to rapid changes
in info flow.
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This paper

= Main idea: Move away from 1. earnings data and 2. regressions.

2/11



This paper

= Main idea: Move away from 1. earnings data and 2. regressions.

» 1. We proxy for noise instead of fundamental value (Dessaint et al.,
2018; Honkanen and Schmidt, 2021).

» Using large mutual fund outflows.

» MFFlow measures the "intensity” at which a stock is fire-sold in a
given month (Edmans et al., 2012; Wardlaw, 2020).

» MFFlow is monthly and horizon-independent .

Price = Fundamental Value + Noise
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This paper

= Main idea: Move away from 1. earnings data and 2. regressions.

» 2. We use MFFlow to identify (presumed) non-fundamental price
shocks.

» Each month, we use MFFlow to collect a subset of stocks that fall in
the lowest decile of the cross-sectional MFFlow distribution.

» Form portfolios of shocked stocks and calculate the CAR after the
shock.

2/11



Recovery from Shocks
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Recovery from Shocks
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figure 2. CAARs (panel approach).
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Learning from the price drop

» Nonfundamental shocks are incompletely observable.

» Qutflows are not disclosed for some time.

» MFFlow is noisy.

» This creates a situation in which acquiring information plays a key
role for investors.

= [...] Over time, the conditional probability that the price drop was
due to the arrival of adverse private information would decline and the
price would recover in expectation [...] a suitable specialization of the
neoclassical model of He and Wang (1995) could be used to analyze
price dynamics in this setting (Duffie, 2010).
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A simple one-shot model

Continuous trading on [0, T)

@ @ T <o0
I _
shock [a stock pays F]

Total number of shares of stock m; available:
dife =T ?dBpmz, 0 ~ A (0,7,,5)

Each agent i has CARA=" utility over Wi-:

E {_e—VW§ —>public + private info

We define ¢; as the private information flow, which corresponds
to the cross-sectional average number of private signals.
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The model’s key insight for price informativeness

Theorem 1 In equilibrium, price informativeness at time ¢ is (Formula A):
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The model’s key insight for price informativeness

Theorem 1 In equilibrium, price informativeness at time ¢ is (Formula A):

Tm t d¢u 2
c _ ~m vy d
Tt TF + 72 A ( au ) u

Main message: The speed at which information flows from prices is

proportional to the square of the speed at which private information
accumulates.
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The model’s key insight for price informativeness

Theorem 1 In equilibrium, price informativeness at time ¢ is (Formula A):

@ Tm [t/ doy ) 2
= d
Tt TF + 72 /0 ( au u

= Therefore, the task of recovering the flow of price informativeness is

one of recovering the flow of private information, (¢:):~0, and the three
remaining parameters:

ez(;—rg TE ¢>o).
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Recovering the Shape of Learning from Prices

1.) Recovering Private Information Flow ¢;:

» The diffusion of CAR (o¢) in equilibrium is a function of ¢}:

or=\/d(Py)/dt =a Y2771 (14a-¢)).
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Recovering the Shape of Learning from Prices

1.) Recovering Private Information Flow ¢;:

» The diffusion of CAR (o¢),which is a function of ¢} and is in
equilibrium given by:

ot = \/d<Pt>/dt:afl/2-T;1-(1+a-gz§/t).

| —
TAQ-based vQV model-implied v/QV

» Then, differentiate and solve for ¢; (formula B):

rl@=cb+ |\ e Foa(- Fazan e

ot ( exp <ff05cru/al/2du) os/all?
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» We adopt the view of the empiricist who only learns from the history
of prices.
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2.) Recovering model parameters © with MLE

» We adopt the view of the empiricist who only learns from the history
of prices.

» And let her predict what the next CAR datapoint will be,
BnAl(n-1)-0 = E[P,,.A\ﬂ&_l)ﬂ], with error variance, 02 4 - A.

» The resulting log-likelihood is given by the following expression:
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Maximum Likelihood Estimation

2.) Recovering model parameters © with MLE

>

We adopt the view of the empiricist who only learns from the history
of prices.

And let her predict what the next CAR datapoint will be,
tin-al(n—1)-a = E[Pn.alZ{_1y.al. with error variance,
Zn-A\(n—l)-A = Var[Pn.A\ﬁ(Cnfl)_A] ~ J%-A A

The resulting log-likelihood is given by the following expression:

2
Pn- —HMn. n—1)-
Maxger: L7 = —3 Lt (log(2 ) +log(oha - A) — (W) )

Which we maximize to find the parameters which make the observed
data (CAR) most likely.
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lllustration of Methodological Steps

» llustrative example: Shock 231, occured on February 2016.
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lllustration of Methodological Steps

» llustrative example: Shock 231, occured on February 2016.

» Recovery period runs from March 2016 through February 2017.
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We get as many curves of price informativeness as there are recoveries
(300).
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We get as many curves as there are shocks (300):

£)

Price Informativeness, log(T,

time, t

10/11



Inspiration from the fixed-income literature

We get as many curves as there are shocks (300):

£)

Price Informativeness, log(T,

10/11



Inspiration from the fixed-income literature
We get as many curves as there are shocks (300):

£)

Price Informativeness, log(T,

» We capture these shapes with their 1.

L, = log(r)
10/11



Inspiration from the fixed-income literature
We get as many curves as there are quarters (300 shocks):
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Inspiration from the fixed-income literature
We get as many curves as there are quarters (300 shocks):

£)

Price Informativeness, log(T.

|
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time, t
» We capture these shapes with their 3.

Curvature; = 75 — 277 )+ TF
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The shape of price informativeness over two decades
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figure 3. Level of price informativeness over time.
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The shape of price informativeness over two decades
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figure 4. Slope of price informativeness over time.
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The shape of price informativeness over two decades
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figure 5. Curvature of price informativeness over time.
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The shape of price informativeness in the cross-section

Size Value Liquidity™ Coverage™
Ly 1.22%Fx _Q27%% _0.97*%  -0.20
(9.22)  (-2.46) (-8.13) (-1.49)
Sp -0.84%%% 0. 40%*k*  (.p2%** 0.04
(-5.28) (3.04) (4.30) (0.33)
C: 0.13***  _0.06 -0.10** -0.01
(2.64) (-1.54) (-2.19) (-0.41)

Table 1. Cross-sectional differences in price informativeness.



The shape of price informativeness in the cross-section

Size Value Liquidity™  Coverage™
Ly 1220 027*%F -0.97%  -0.20
(9.22)  (-2.46) (-8.13) (-1.49)
Sp -0.84%FK 0. 40%k* (. p2%k* 0.04
(-5.28) (3.04) (4.30) (0.33)
C: 0.13%  _0.06 -0.10%* -0.01
(2.64) (-1.54) (-2.19) (-0.41)

Table 2. Cross-sectional differences in price informativeness.
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» “Almost all markets are efficient”, meaning"“price is within a factor 2
of value” at least 90% of the time (Black, 1986)
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