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Abstract

We measure price informativeness (PI) based on price recovery from supply shocks

using mutual fund fire sales. Incomplete observability of shocks suggests a rational-

expectations view: investors learn which of fundamentals or supply drive price pressures

they see together with their private information. In equilibrium, PI flows with the

square of the private information flow, a deterministic, nondecreasing but otherwise

arbitrary function. The main result is a formula that recovers this function from the

quadratic variation of returns on shocked firms using intraday data. This procedure

produces curves of PI for each shock. Since the late 90s prices have revealed less

information more slowly (PI’s slope and curvature) while fundamental uncertainty has

declined (level). Crises coincide with sudden stops and equally fast rebounds in the PI

flow when they end. Size and liquidity largely determine the shape of PI across firms,

yet are of vanishing importance over the last decade.
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1 Introduction

[In a society where information is dispersed among many people] we must look at the price system

as a mechanism for communicating information if we want to understand its real function.

—F. Hayek (1945)

The classical formalization of this idea is that prices are signals of the form “value plus noise”

(e.g., Grossman and Stiglitz (1980)). Measuring informativeness of prices consists then in mapping

variation in prices into variation in “value” or “noise”. The issue is that the two are not observ-

able separately. The literature 1. proxies for the “value” element of the price signal with future

earnings, which it then 2. regresses on prices (e.g., Bai, Philippon, and Savov (2016)). Yet, this

expedient raises other, practical problems: “earnings are statistics conceived by accountants which

are supposed to provide an indicator of how well a company is doing, and there is a great deal of

latitude for the definition of earnings” (Shiller, 1981), and, more problematically, they are horizon

dependent. For instance, firms with different characteritics (e.g., value versus growth) likely have

different cashflow duration. Earnings also impose a low frequency (quarterly at most) on these

regressions, which thus speak to long-term, low-frequency information—they are not designed to

detect rapid changes in the information flow that presumably occur at higher frequencies.

We propose a measure that is separate from 1. earnings data and 2. the regression approach.

Our starting point is to proxy for the “noise” element of the price signal instead (e.g., Dessaint,

Foucault, Frésard, and Matray (2018); Honkanen and Schmidt (2021)). Noise is often modeled as

supply shocks, reflecting price changes unrelated to information and without which investors would

refuse to trade (Milgrom and Stokey, 1982). Following a large literature (Coval and Stafford, 2007;

Edmans, Goldstein, and Jiang, 2012), except for a few adjustments (Wardlaw, 2020), we measure

supply shocks from mutual fund outflows (MFFlow), attempting to map mutual funds that are sub-

ject to large redemptions into unanticipated liquidation “fire sales” of individual stocks they hold.

This proxy for “nonfundamental” shocks is horizon independent and can be constructed monthly,

thus addressing some of the issues above, but is no panacea either. We do not know whether a fund

liquidates a stock in response to the outflow or in response to adverse fundamental information—

value and noise remain separately unobservable. We address the incomplete observability of supply

shocks by moving away from a regression approach.

The idea is to use the MFFlow measure to create an empirical framework in which the informa-

tional content of prices can be cleanly recovered in response to a specific event (presumed fire sales).

To be clear, we are not interested in using MFFlow as an instrumental variable in a regression, but

only to select a subset of firms in its lowest decile, those subject to the largest supply shocks in a

given month (278 firms on average). Each month we form an equally-weighted portfolio of these

shocked firms and track their cumulative abnormal returns (CAR) relative to the Carhart (1997)

factors and five-industry portfolios following the shock. In response to the supply shock CAR on
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this portfolio experiences strong downward pressures. Yet, because supply shocks are incompletely

observable, investors cannot immediately tell whether fundamental or supply drives the CAR drop

they observe. This situation gives a particularly important role to learning from prices: over time

it would become increasingly unlikely that the CAR drop was caused by fundamental news and

CAR would recover. The path of CARs over this recovery period, which we take to be yearly as

most of the reversal from the shock occurs over this period in our sample, is the focus of this paper.

In his presidential address, Darrell Duffie discusses exactly this idea and concludes “a suitable

specialization of the neoclassical model of He and Wang (1995) could be used to analyze price

dynamics in this setting” (Duffie, 2010). This model is indeed easily interpreted in terms of the

empirical framework above. The initial date represents the month-end date over which the supply

shock takes place and the economy’s finite horizon the end of the recovery window over which

CARs converge back to fundamentals on average. Investors learn from prices along with their own

private information which of value or noise drives the price realizations they see. We specialize this

model in two ways that play a central role in the analysis. First, we consider a general process

of private information collection, which the average number of private signals across investors

entirely subsumes in equilibrium. This average measures the flow of private information and is a

deterministic and nondecreasing function of time but is otherwise arbitrary. Second, trading takes

place continuously over the recovery window: in equilibrium prices follow a diffusion process, with

the important consequence that the quadratic variation of their paths is observable.

This theoretical framework delivers a key insight for price informativeness. Equilibrium imposes

a precise relation between price informativeness and the flow of private information: when noise

is fully transitory the speed at which information flows from prices is proportional to the square

of the speed at which private information accumulates. Therefore, the task of recovering the

flow of price informativeness is one of recovering the flow of private information: a deterministic

but arbitrary function of time and three parameters (the initial level of this function, that of

uncertainty regarding fundamentals, and the extent of variation in noise). What is now needed is

an identification procedure to recover these model primitives.

The main theoretical result of the paper is a recovery formula for the private information flow.

We exploit a well-known property of high sampling frequencies, namely that in continuous time

the quadratic variation (QV) of diffusions is observable. In this CARA-normal model equilibrium

prices follow a Gaussian process: their diffusion is deterministic, and just a function of the private

information flow and the parameters above. Hence, sampling the paths of CARs sufficiently fre-

quently following the shock we could compute their QV from the data, invert this function and

recover the private information flow as a function of observed QV, similar to the typical exercise

of inverting the Black-Scholes formula to recover implied volatility as a function of options prices.

We construct the QV of the portfolio of shocked firms using intraday NYSE TAQ data. Each day

over the yearly recovery period we sample portfolio CARs at the 10-minutes frequency, and cal-

culate their QV following Aı̈t-Sahalia, Kalnina, and Xiu (2020). For each shock we obtain a daily
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time series of QV, which we plug in the recovery formula, which in turn gives a curve of private

information flow sampled daily over the yearly window, given the three remaining parameters.

The last step is to identify these three parameters using these daily time series, along with the

time series of CARs. In this model the empiricist, who is part of the equilibrium construction, is

defined as an external observer who only observes the history of CARs. The usual exercise is to

let the empiricist predict each day over the recovery window what the next CAR datapoint will

be. In the model she does so by means of Kalman filtering, and infers fundamentals and supply

from the paths of CARs following each supply shock. Remaining parameters can then be identified

by maximum likelihood estimation. After recovering these parameters we reconstruct the curve of

price informativeness from its equilibrium relation with the recovered curve of private information

flow, the key insight above. This procedure produces as many such curves for price informativeness

sampled daily as there are shocks over their associated yearly recovery period.

The novelty of this procedure is to recover the “shape” of learning from prices, as opposed

to a single “snapshot” of it. To summarize this shape with just a few numbers we follow the

literature that models the term structure of interest rates and define similarly measures of Level,

Slope and Curvature of price informativeness curves. Level measures the empiricist’s prior precision

regarding fundamentals, and thus its inverse prior uncertainty, which represents the largest amount

of information that the empiricist can learn about fundamentals for a given shock. Slope captures

the increase in price informativeness over the recovery window, and thus how much information

she effectively learns from prices over this period. Curvature quantifies how fast this information

becomes available to her, with a concave (convex) curve indicating information flows from prices

early (late). We apply this procedure over the last two decades, from 1997 to 2022, a total of

25 years × 12 months = 300 shocks. The resulting 300 datapoints for each of Level, Slope and

Curvature allow us to understand how the shape of price informativeness has evolved over time.

Quite clearly, learning from prices is substantially more difficult during crises. Three crises

occur over the sample period: the Dotcom bubble, the global financial crisis, and the Covid-19

pandemic. Level and slope fell sharply on these occasions, with a particularly impressive drop

upon the global financial crisis. Not only is there a larger amount of information to be learnt, but

less information can be learnt from prices. Curvature also spikes (the information flow becomes

strongly convex), meaning that fundamental information is slower to make its way through prices.

Interestingly, towards the end of crises the flow of price informativeness reverses equally fast, with

a sudden rebound in level and slope along with a sharp drop in curvature: uncertainty declines

and the information flow accelerates markedly. This reversal in the shape of price informativeness

sounds the death knell of a crisis.

Two trends are unmistakable. Over the sample period, but mostly over the last decade, level

rose and slope declined. Whereas the decline in prior fundamental uncertainty (rising level) has

been quite steady over the sample period (apart from crises) slope rose during the early part of

the sample but started declining distinctly after the financial crisis. Curvature also exhibits a weak
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upward trend, with curvature swings becoming weaker over time. The picture is, over the last

decade prior uncertainty has declined, and prices have not only revealed less information but have

also incorporated it more slowly. These trends cannot be explained by changes in characteristics

of shocked firms we select, e.g., these becoming smaller, less liquid, less covered by analysts or

exhibiting greater price inelasticities (Koijen and Yogo, 2019). In fact, not only do trends persist

when controlling for these characteristics but they become statistically stronger—uncertainty has

dropped but prices have revealed less information and at a slowler pace.

However, which patterns in price informativeness should we expect in the first place? We

examine this question from the perspective of classical views on market efficiency (Shiller, 1981;

Black, 1986), which allow us to appreciate what is a low or high level of price informativeness. In

his presidential address Fischer Black conjectures “almost all markets are efficient”, meaning “price

is within a factor 2 of value” at least 90% of the time. This claim can be formulated mathematically

in the model, and implies a lower bound on pricing accuracy relative to fundamental prior precision.

Unsurpringly, crises are systematically associated with inefficient markets. Yet, what stands out

is the long period of substantial inefficiency surrounding the Covid-19 pandemic. Intuition would

perhaps suggest prices are more efficient when fundamental precision is higher, but what matters is

how it rises relative to pricing accuracy. The rise in level and the decline in slope do not translate in

an equivalent improvement in pricing accuracy, meaning these trends in fact result from inefficient

prices. Even adopting a different, stronger notion of efficiency (Fama, 1970; LeRoy, 1989), if we

accept the idea that prices do not reflect information instantly but appropriately fast, prices have

incorporated information significantly more slowly over the last two decades.

Although firm characteristics do not determine aggregate trends, they do play an important

role in the shape of price informativeness across firms. To a large extent, size and liquidity (orthog-

onalized to size) are the two characteristics that matter most. Because larger firms exhibit lower

fundamental uncertainty (higher level) they offer less potential for learning and less information to

be learnt from their price (lower slope). Liquidity exhibits exact opposite patterns relative to size:

higher liquidity is associated with a larger and faster amount of information. More liquid firms are

also associated with greater fundamental uncertainty to the extent that they are also subject to

tremendously less noise trading. Most interestingly, the shape of price informativeness has become

increasingly insensitive to size and liquidity. This result may speak to the “data feedback loop”

(e.g., Begenau, Farboodi, and Veldkamp (2018) or Veldkamp (2023)), which postulates that large

firms benefit more from data, generate more data and thus grow even larger. Among shocked firms,

at a yearly horizon and over the last decade this mechanism may have become less prevalent.

We position these conclusions and the procedure on which they rely relative to Ebit-based

regressions first. Our procedure exploits supply shocks with the benefit of resolving horizon depen-

dence but at the cost of focusing on a subset of shocked firms. Yet, although Ebit-based R2—how

much cross-sectional variation (Bai et al., 2016; Farboodi, Matray, Veldkamp, and Venkateswaran,

2022) or time-series variation (Davila and Parlatore, 2023) in returns is explained by variation in
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Ebit—speaks to the substantially broader CRSP universe, it behaves similarly when restricted to

our sample of shocked firms. In addition, our procedure uses intraday data with the benefit of

recovering curves of price informativeness. Yet, provided we focus on time-series variation (Davila

and Parlatore, 2023), R2 can be mapped into these curves: R2 summarizes a curve of price in-

formativeness with the ratio of its slope to its terminal point (level plus slope), meaning what

is learnt from prices relative to what can be possibly learnt. Ebit-based regressions are intended

to capture low-frequency, long-term information and, unsurprisingly, their R2 is remarkably stable

relative to ours, e.g., variation during crises is weak. Magnitudes also differ, but such differences are

commonplace in different asset-pricing contexts (e.g., Roll (1988), Morck, Yeung, and Yu (2000) or

Cochrane (2011)). However, the two measures are mostly consistent across key firm characteristics.

The microstructure literature offers measures that are designed to pick up high-frequency in-

formation, the kind of information “where knowing a moment before others know something is

valuable” (Farboodi et al., 2022), e.g., the PIN measure of Easley, Kiefer, O’Hara, and Paperman

(1996) and the price jump ratio developed by Weller (2018). In particular, the measure of Weller

(2018) is meant to detect the extent of information prices incorporate just a month ahead of an an-

nouncement, and PIN is typically computed daily. Although our procedure uses intraday data and

samples price informativeness daily, the relevance of the information it captures persists for as long

as CARs eventually recover, which occurs at a yearly horizon on average. We think this information

frequency puts us between microstructure-based measures and Ebit-based regressions. Our focus

on supply shocks is also related to Brogaard, Nguyen, Putnins, and Wu (2022), but the procedure

differs, with theirs relying on statistical decompositions and ours on structural estimation.

Section 2 presents the empirical strategy and the construction of the path of CARs follow-

ing supply shocks. Section 3 interprets these paths in terms of the model and derives the main

insight into the equilibrium relation between price informativeness and the private information

flow. Section 4 contains the main theoretical result, a recovery procedure for the shape of price

informativeness and how to summarize it. Section 5 examines this shape over time, across firm

charactersitics, from the perspecitive of market efficiency, and relative to Ebit-based regressions.

2 Price recovery from supply shocks

We present the empirical strategy, how we implement it using standard measures based on mutual

fund outflows (supply shocks), and how we “strip out” common factors to obtain the recovery path

of cumulative abnormal returns (CARs) following these supply shocks.

2.1 Empirical strategy

The rational-expectations literature (e.g., Hellwig (1980), Diamond and Verrecchia (1981) or Gross-

man and Stiglitz (1980)) and the microstructure literature (e.g., Kyle (1985) or Glosten and Milgrom

(1985)) commonly view prices as signals of the form:
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“fundamental value plus noise.”

Prices change to reflect new information about payoffs, but they also change for non-informational

reasons. Without such “noise” investors would refuse to trade (Milgrom and Stokey, 1982).

A conceptual issue is that noise and value are not observable separately, which regression-based

approaches in the literature address by choosing a proxy for the “value” element of the price signal

(e.g., Bai et al. (2016), Farboodi et al. (2022) or Davila and Parlatore (2023)). Constructing proxies

for value in turn raises practical issues: 1. because dividends are not by paid by all CRSP firms,

earnings, often Ebit at a 1− up to 3−years horizon, are used in lieu of value, and there exists as

many such proxies as there are definitions of earnings (e.g., Ebit, free cashflow or net income). 2.

Earnings are horizon dependent, and selecting a single horizon is difficult as firms with different

characteristics have different cashflow duration. For instance, a young company that has developed

a promising technology will likely see its stock price rise, but this informational increase may not

be reflected in Ebit over the subsequent 3 years, as associated profits will only arise later. 3.

Earnings impose a quarterly sampling frequency when regressed on prices, with these regressions

thus measuring low-frequency information. Yet, even if information concerns long-term horizons

rapid changes in its flow presumably occur at higher frequencies.

Our starting point is to move away from earnings data, and instead construct a proxy for

the “noise” element in the price signal. Noise is often modeled as supply shocks and reflects,

more broadly, price changes unrelated to information.1 We measure supply shocks from mutual

fund outflows following a large literature that attempts to map mutual funds subject to large

redemptions into unanticipated liquidation “fire sales” of individual stocks they hold (Coval and

Stafford, 2007; Edmans et al., 2012). This proxy is horizon independent and can be constructed

monthly (e.g., Honkanen and Schmidt (2021)), resolving some of the practical issues above. Yet

this proxy is noisy, as it remains separately unobservable from value, and is not contemporaneously

observable, as redemptions are not disclosed for some time. In particular, we do not know whether a

fund manager liquidates a stock in response to the outflow, or because she had adverse fundamental

information, or for some other reason, e.g., she liquidates this stock because it is more liquid.

To address the incomplete observability of supply shocks we move away from the regression

approach. We use the proxy for supply shocks to create an empirical framework in which the

informational content of prices can be recovered in response to the presumed fire sales event.

Formally, the only use we make of the proxy is to select a subset of firms that are subject to the

largest supply shocks in a given month, those that fall in its lowest decile (278 firms on average).

Each month we form an equally-weighted portfolio of these shocked firms and track their cumulative

abnormal returns (CAR) relative to the traditional factors. CAR on this portfolio experiences

substantial downward pressures upon the shock. Yet, because supply shocks are incompletely

1There are different ways to model uninformative price changes: liquidity needs may arise from private
investment opportunities (Wang, 1994), investor specific endowment shocks, or income shocks (Farboodi and
Veldkamp, 2017), noise trading (Black, 1986), misallocation or market inefficiencies (Grossman, 1995).
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observable, investors cannot immediately tell whether the price drop is fundamental- or supply-

driven and must learn from prices following the shock: over time it would become increasingly

unlikely that the CAR drop was caused by fundamental news and CAR would recover.2 We

explain the construction of CAR paths over this recovery period and the measurement of supply

shocks in separate subsections next.

For the purpose of constructing the measure of price pressure caused by fund outflows we

collect data from two sources. We obtain data on fund flows from CRSP and s12 holdings data

from Refinitiv (formerly CDA Spectrum). Data on stock prices and volume is collected from CRSP

and balance-sheet data from Compustat. We start from a stock universe that is made of all US

common stocks traded on NYSE, Nasdaq, or AMEX and then select a subset of shocked firms in

a way we describe below.3 The sample period runs from 1997 through 2022.

2.2 Measurement of supply shocks

We start from the methodology of Edmans et al. (2012) (henceforth, EGJ), and compute downward

price pressure on stock i caused by mutual fund trading in month t as:4

MFFlowi,t =

m∑
j=1

SHARESi,j,q(t)−1 × PRCi,t−1

TotalAssetsj,t−1
× Flowj,t

VOLi,t
. (1)

The first ratio is the fraction of wealth fund j holds in stock i at the beginning of month t. The

number of SHARES of stock i that fund j holds is recorded at the end of quarter q(t) − 1 prior

to month t, and we assume these holdings remain constant over each quarter. Price, PRCi,t−1,

and total net assets, TotalAssetsj,t−1, are recorded at the end of the preceding month t − 1. This

position (in % of wealth) is then multiplied by total dollar outflow, Flowj,t, fund j experienced

in month t, which is negative by construction.5 The resulting product represents “hypothetical

2This is a key difference between mutual fund outflows and, for instance, additions/deletions of stocks in
an index. Whereas these additions/deletions also represent nonfundamental demand/supply shocks to stocks
(in the sense that index funds are forced to buy/sell these stocks), these changes in index constituents are
publicy announced, thus removing the possibility that associated price changes are driven by fundamentals.

3That is, all stocks in the CRSP universe with sharecodes (shrcd) 10 or 11, and exchange code (exchcd)
of 1, 2, 3, 31, 32, or 33. We additionally exclude firms that have multiple share classes, i.e., non-blank entries
in ”shrcl” in the CRSP dataset.

4EGJ calculate MFFlow at a quarterly frequency, because fund holdings are reported per quarter. Since
it is assumed that portfolio holdings of funds remain constant over each quarter, we can compute monthly
MFFlow as fund outflows are available at a monthly frequency. This methodology is similar to Honkanen
and Schmidt (2021).

5Following previous studies using trading pressure induced by flows (e.g., Edmans et al. (2012); Ali, Wei,
and Zhou (2011) Hau and Lai (2013)), our focus is on fire sales rather than “fire purchases.” This choice is
customary, for two reasons. First, mutual funds are more likely to face significant pressure to divest stock
positions when outflows deplete their cash reserves. In contrast, they have more discretion in timing stock
purchases after receiving inflows. Second, fund inflows, unlike outflows, are known to strongly respond to
past fund performance, indicating a convex fund flow-performance sensitivity (see, for instance, Sirri and
Tufano (1998) or Gruber (1996)). Therefore, “fire purchases” are hardly nonfundamental nor exogenous.
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sales”, which assumes that fund j responds to its total outflow by liquidating proportionally to her

portfolio at the end of the quarter q(t)− 1 prior to month t. This approach is in contrast to that

of Coval and Stafford (2007) who use actual sale transactions of mutual funds. A common concern

raised against using direct transactions is that distressed funds may choose to sell specific stocks

for which they possess unfavorable information (Huang, Ringgenberg, and Zhang, 2023), which

could violate the assumption the shock is exogenous and nonfundamental. The use of hypothetical

sales serves to mitigate this concern. Furthermore, because there is significant heterogeneity in

trading volume across firms, the measure is scaled by VOLi,t, which is meant to capture trading

volume in dollar units and is calculated by multiplying volume in shares with month-end stock

price, PRCi,t. Finally, the measure is aggregated across all funds for which percentage monthly

outflow is |Flowj,t/TotalAssetsj,t−1| ≥ 2.5% (i.e., funds subject to big redemptions).6

We further adjust the measure to address a recent critique that MFFlow is mechanically con-

taminated by fundamental information (Wardlaw, 2020). The issue is in the definition of dollar

volume VOL, which converts volume in shares to dollar units using month-end prices. As a result,

the stock price appears both in the numerator and denominator of (1) but at different dates in a

way that inverse gross return,
PRCi,t−1

PRCi,t
, is a component of the measure. Thus the measure is not

exempt of fundamental information. We address this problem by redefining V OL using daily dollar

volume, which is now directly available from CRSP, and then cumulate it over the month. This

adjustment mitigates Wardlaw (2020)’s criticism as it converts share volume into dollar volume on

a daily basis, as opposed to a single month-end conversion.

In Figure 1 we illustrate how this adjustment affects average daily cumulative return, in excess

of the CRSP equally-weighted index. In particular, this figure compares average cumulative excess

returns of stocks that fall in the lowest decile of the full sample MFFlow distribution, under its

original definition (red curve) and under our proposed adjustment (blue curve). The red curve

reveals impressive downward price pressure on these stocks, with a whooping drop of more than 3%

on average in the shocked month (shaded area). Returns then slowly recover back to fundamentals

within roughly 1.5 years after the shock. Under our adjusted MFFlow the pattern remains similar

but magnitudes are weaker, suggesting that Wardlaw (2020)’s critique does matter.

2.3 Recovery path of portfolios of shocked firms

Our focus is quite different from the way the MFFlow measure is often used in the literature.

The literature focuses on the month (or quarter) the supply shock takes place and commonly uses

6EGJ use a threshold of 5% to define “large quarterly outflow.” Intuitively, the threshold should become
looser as the time period over which outflows are calculated decreases. Therefore, similar to Honkanen and
Schmidt (2021), who use a threshold of 2%, we consider monthly outflows of ≥ 2.5% as “large outflows.”
However, results remain similar for thresholds between 2% and 5%.
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Figure 1: Average cumulative abnormal log returns (CAARs) around supply
shocks. This figure illustrates the daily cumulative average log returns, adjusted for the
CRSP equally-weighted index, of stocks belonging to the lowest decile of the full sample
MFFlow distribution. The shaded area highlights the month in which the shock occurs,
and the x−axis correspond to days relative to this shock. The curve “original” is based
on the MFFlow measure of Edmans et al. (2012), whereas the blue curve is based on the
adjusted MFFlow measure we propose to address the criticism in Wardlaw (2020).

MFFlow as an instrumental variable in a regression specification.7 In contrast, we are exclusively

interested in cumulative returns over the recovery period following the month in which the shock

occurred, as opposed to MFFlow itself: we only use MFFlow to form portfolios of firms.8 Each

month we select stocks that fall in the lowest decile of the monthly MFFlow distribution (because

MFFlow is negative the lower it is, the stronger the associated supply shock is). We then form

equally-weighted portfolios of these stocks each month, which we hold over a “recovery period” to

be described. Finally, each month we record cumulative returns on the portfolio over the recovery

window. The portfolio contains 278 stocks on average and, because it is equally weighted, can be

interpreted as the “average shocked stock.”

We want to isolate the part of portfolio returns that is specific to recovery from the shock,

controlling for aggregate variation (time specific) and variation that is stock specific. For instance,

we know firms mutual funds hold tend to be smaller stocks (Berger, 2023; Wardlaw, 2020). They

7For instance, related literature in empirical corporate finance shows that supply shock impact share-
holder activism (Derrien, Kecskes, and Thesmar, 2013; Norli, Ostergaard, and Schindele, 2014), corporate
disclosures (Zuo, 2016), takeover attemps (Edmans et al., 2012), corporate investments (Dessaint et al.,
2018), option grant timing (Ali et al., 2011) and the use of credit lines (Acharya, Almeida, Ippolito, and
Perez, 2014).

8In this respect, this paper is closer to Honkanen and Schmidt (2021) who discuss the effect of supply
shocks on cross-asset learning from prices in a rational-expectations model or to Lee and So (2017) who show
that analyst coverage of stocks increases after supply shocks.
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also tend to outperform the equally-weighted CRSP index (Wardlaw, 2020), which is usually used

as the main benchmark (see, e.g., Edmans et al. (2012) or Dessaint et al. (2018)). Therefore, it

is important to control for dimensions along which shocked firms in the portfolios we form are

different from other CRSP firms. Specifically, we compute the cumulative abnormal return (CAR)

on the portfolio of shocked firms in excess of its exposure to the usual four factors (Carhart, 1997).

In addition, we control for sector-specific effects relative to the five industry portfolios, which along

with the market constitute the main determinants of volatility.9 We estimate factor exposures each

day over the recovery window using intraday variation according to the procedure we describe in

Section 4, at which point we will clarify the relevance of intraday variation in this computation.

Finally, to select the length of the recovery period we examine the average time it takes for CARs

to recover. Intuitively, we expect the recovery period to end once CARs level off. Yet, whereas

Figure 1 suggests CARs fully recover after two years, they in fact continue to rise above their pre-

shock value when extending the window beyond two years. This continuation likely represents a

premium unrelated to the shock itself, but due to certain characteristics of shocked stocks (Wardlaw,

2020) that the factors described above are precisely aimed to capture. In addition, the tendency of

fire sales to cluster (firms that get shocked repeatedly) may also contribute to extend the duration of

recovery (Honkanen and Schmidt, 2021). To control for fire sales clusters, we run panel regressions,

with the additional benefit of controlling for (unobserved) characteristics that do not vary within

groups of observations and that the factors above would not subsume. We regress monthly excess

returns on a set of event-time dummies, Dt+x, for each month t in a window of x ∈ [−3, 30]

months around the shock, including stock- and time-fixed effects and factors listed above (market,

size, value, momentum and industry).10 The coefficients on these dummies capture the marginal

average abnormal return on shocked firms in the associated month relative to unshocked firms,

which we plot in Figure 2. Abnormal returns recover rapidly first and then truly level off. We

select the length of the recovery window to be 1−year, since most of the reversal from the shock

occurs over this period. In Section 4 intraday data will confirm that most variation following the

shock occurs over one year.

9Industry categories are manufacaturing, hitech, consumer health and other. Classifications are based on
four-digit SIC codes which we obtain from Kenneth French’s data library that is accessible here.

10Here we omit the category ”other” to prevent perfect collinearity.

10

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_5_ind_port.html
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Figure 2: CAARs based on panel regression approach. This figure shows cumulative
average abnormal returns (CAARs) of shocked firms in event-time, where date zero is the
month over which the fire sale takes place. The blue curve plots the cumulated coefficient
estimates on the event-time dummy variables.
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3 Model

In his presidential address, Darrell Duffie discusses the possibility that the incomplete observability

of supply shocks explains the slow recovery of CAR patterns in Section 2: “If investors are unable

to immediately identify whether the price drop is due to the arrival of adverse information or due

to an unanticipated supply shock, then it would take time for them to improve their inference by

observing cash flows and other information [...] Over time, the conditional probability that the price

drop was due to the arrival of adverse private information would decline and the price would recover

in expectation [...] a suitable specialization of the neoclassical model of He and Wang (1995) could

be used to analyze price dynamics in this setting.” (Duffie, 2010) The goal of this section is to

provide this specialization. We use a continuous-time extension of He and Wang (1995) in which

we keep the process of private information collection as general as possible, along the lines of Cujean

(2020). The key insight of this model is that in equilibrium the speed at which information flows

from prices is proportional to the square of the speed at which private information accumulates.

3.1 Rational-expectations framework

Time is continuous and runs up to a finite horizon T , at which some unobservable “fundamental”

value, F̃ ∼ N (0, τ−1
F ), will be paid. The economy is populated with a continuum of agents indexed

by i ∈ [0, 1], all of whom exhibit CARA utility over terminal wealth with common absolute risk

aversion, γ. Trading takes place continuously over [0, T ). The market consists of two assets. The

first asset is a risky stock with equilibrium price Pt at time t. The stock is a claim to the fundamental

F̃ . The second asset is a riskless claim with perfectly elastic supply and a rate of return normalized

to r = 0 (consumption takes place only once).

The problem of agent i is to find a predictable portfolio strategy θi maximizing her expected

utility over terminal wealth:

E
[
−e−γW i

T

∣∣∣F i
t

]
(2)

subject to W i
T = W i

0 +

∫ T

0
θitdPt + θiT∆PT , (3)

where F i
t denotes agent i’s information set at time t to be described. The budget constraint in Eq.

(2) includes a price discontinuity of size ∆PT occurring at the horizon date (see Cujean (2020)).

Prices change to reflect informed trades but also due to unobservable shocks to the supply of

the stock, m̃, which evolves according to an AR(1) process:

dm̃t = −bmm̃tdt+ τ−1/2
m dBm,t, m̃0 ∼ N (0,∞) (4)

with Bm a Brownian motion, τm and bm constants, which represent supply precision and mean

reversion in supply, respectively. This is the usual noise trading story (m̃ is the supply available
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to the market, whereas noise traders—agents who trade for reasons unrelated to fundamental

information—have inelastic demands of 1−m̃ units of the stock (in total supply of 1)); accordingly,

the coefficient bm can be viewed as the fraction of the demand of noise traders who revert their

trades over a time interval dt. Thus, bm ≡ 0 means that, unlike informed traders, noise traders are

buy-and-hold investors. For instance, this assumption is appropriate for the purpose of explaining

intraday patterns. Finally, we assume diffuse priors regarding the initial supply shock.

This model is easily interpreted in terms of the empirical framework of Section 2. Date 0

represents the month-end date over which the initial supply shock, m̃0, takes place and [0, T ] is

the recovery window over which prices converge back to fundamentals F̃ (1 year in expectation as

illustrated in Section 2). Investors cannot immediately tell which of fundamentals, F̃ , or initial

supply shock, m̃0, drives the first price realization, P0. Over time they learn from subsequent prices

along with “other information” they observe to decide which of the two was responsible for P0. We

now specify how this “other information” is collected.

3.2 Private information collection

The goal is to maintain a flexible structure for investors’ private information. We assume that over

time each agent i obtains an increasing sequence of private signals about the fundamental:

Si
j = F̃ + ϵij , j = 1, ..., ni

t (5)

where ni
t ∈ N∗ denotes the number of signals agent i has collected up to time t and where ϵij ∼

N (0, τ−1
S ) represents the “idiosyncratic” noise in agent i’s j−th signal. By idiosyncratic we mean

there is one such random variable per agent i and signal j, and that these random variables are

sufficiently independent for a version of the Strong Law of Large Numbers to hold across agents

and signals (e.g., Duffie and Sun (2007)).11

Agent i starts with an initial, idiosyncratic number ni
0 of signals, which is drawn from a dis-

tribution π0 with support N∗. She then collects new signals at arrival times of an idiosyncratic

Poisson process (N i
t )t≥0 with time-varying intensity ηt(n

i
t−). The intensity at which she gets new

signals potentially depends on her current number ni
t− of signal, e.g., an agent who has gathered

many signals may be more efficient at collecting new ones in the future.

An agent who collects new signals at time t receives a chunk (Si
j+ni

t−
: 1 ≤ j ≤ ∆ni

t), with the

incremental number ∆ni
t of signals drawn from a distribution πt(·;ni

t−), which potentially depends

on her current number ni
t− of signals. Since individual signals are Gaussian and independent

(conditional on F̃ ), an agent’s average new signal:

Y i
t ≡ 1

∆ni
t

∑∆ni
t

j=1 S
i
j+ni

t−
= F̃ + (τ

1/2
S

√
∆ni

t)
−1ϵit, ϵit ∼ IIDN (0, 1) (6)

11That is, for almost every pair (i, i′) of agents ϵij and ϵi
′

j′ are pairwise independent for all j and j′.
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is a sufficient statistic for the chunk she receives. Thus, an agent’s private information is completely

summarized by two numbers at any time t, her average signal and her total number ni
t of signals.

In addition each agent observes the history of prices, (Pt)t≥0, which is endogenous and publicly

available and together with their collection of signals accounts entirely for an agent i’s information:

F i
t = σ

((
Ps, S

i
j

)
: 0 ≤ s ≤ t, 1 ≤ j ≤ ni

t

)
. (7)

This process of information collection generates a cross-sectional distribution of number of

signals, which we denote by µt(n). This distribution keeps track of the number n of signals across

the population of agents at every date t, and satisfies:

d
dtµt(n) = −ηt(n)µt(n) +

∑n−1
m=1 ηt(n−m)µt(n−m)πt(m;n−m), µ0(n) = π0(n). (8)

The first term on the right-hand side in Eq. (8) is the rate at which agents leave their type (the

fraction of agents of type n who received new signals and thus no longer hold n signals). The

second term represents the rate at which agents become of type n.

The key statistic for the equilibrium construction is the cross-sectional average number of sig-

nals:

ϕt ≡ τS ·
∑
n∈N

µt(n)n, (9)

the first moment of the cross-sectional distribution. This average represents the flow of private

information among agents. To be clear, the flexibility of this information structure is only possible

to the extent that the distribution π(·) of incremental signals, the intensity η(·) at which these

signals are gathered and their cross-sectional distribution µ(·) do not intervene directly in the

equilibrium construction as long as they do not depend on the aggregate states, F̃ and m̃: the only

element that matters is the flow, ϕ, which entirely subsumes these elements and is thus central.

3.3 A key insight for price informativeness in equilibrium

In a noisy rational-expectations model the empiricist is part of the equilibrium construction. The

empiricist is someone who only observes commonly available information:

F c
t = σ(Ps : 0 ≤ s ≤ t), (10)

which in this model is the history of prices. From now onwards we adopt the perspective of the

empiricist and view F c as containing the time series of CAR we have constructed in Section 2. With

learning from prices and rational expectations the empiricist, too, can infer which of fundamental

value, F̃ , or initial supply shock, m̃0, drove the initial price realization, P0. At any date t she infers

her own estimate, F̂ c
t and m̂c

t , of what fundamentals and contemporaneous supply are, respectively.
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Most importantly, she computes her estimate of fundamentals with standard error precision:

τ ct ≡ V
[
F̃
∣∣∣F c

t

]−1
, (11)

which defines how informative the history of prices up to time t is, the main focus of this paper.

Theorem 1. In equilibrium price informativeness at time t satisfies:

τ ct = τF +
τm
γ2

∫ t

0

(
dϕu

du
+ bm · ϕu

)2

du. (A)

The key message is that in equilibrium the extent of persistence, bm ≥ 0, in noise trading

(the fraction of noise traders who revert their trades over the next time interval dt) determines

the extent to which price informativeness accumulates with the square of the slope or the level

of the private information flow, ϕ, respectively. Thus, a situation in which Theorem 1 delivers

a particularly strong insight is when noise increments are IID (bm ≡ 0, noise is fully transitory),

which is likely to happen at high frequency. In this case, the speed at which information flows from

prices is proportional to the square of the speed at which private information accumulates.

The case of persistent noise, bm > 0 is also interesting, as it can explain sluggishness in the CAR

patterns of Section 2, which only fully recover after approximately 1 year on average. Persistence

in supply gives informed investors an incentive to trade on short-term price swings, as opposed

to long-term fundamentals, because they know a fraction of noise traders will revert their trades

next period (Cespa and Vives, 2012). However, we will focus on the case bm ≡ 0 in which noise is

fully transitory because this case delivers simple expressions for equilibrium price coefficients. In

particular, in equilibrium the empiricist’s estimates of fundamentals and contemporaneous supply

satisfy:

F̂ c
t =

1

τ ct
·
∫ t

0
(τ cu)

′ · dτuPu

τ ′u
, (12)

m̂c
t =

τ ′t
τt

· (F̂ c
t − Pt), (13)

where τt denotes investors’ average precision at date t:

τt ≡
∫ 1

0
V[F̃ |F i

t ]
−1di = τ ct + ϕt. (14)

The rescaled price signal in Eq. (12) takes the intuitive form of “value plus noise”, the main

insight we started Section 2 with:

dτtPt

τ ′t
= F̃ · dt−

(
τm
γ

· ϕ′
t

)−1/2

· dBm,t. (15)

As the diffusion of the price signal suggests, in a noisy rational-expectations equilibrium noise
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precision and risk aversion are not identifiable separately but only as the combination:

a ≡ (τ1/2m /γ)2, (16)

meaning that aggregate variation in the model is measured in units of absolute risk aversion. For

later convenience (parameter estimation in the next section) we introduce the following parameter

transformations, which take noise in units of absolute risk aversion, 1/a, as a numéraire:

b ≡ a · τF and c ≡ b+ a · ϕ0 . (17)

Therefore, from Theorem 1, the task of recovering the flow of price informativeness is one of

recovering the flow of private information, (ϕt)t>0, and the three parameters:

Θ ≡
(

a b c
)
. (18)

4 Recovering the shape of learning from prices

The novelty of the method we propose is to recover the shape of learning from prices, as opposed

to a single “snapshot” of it. This is possible for two reasons. First, the empirical framework we

adopt identifies an event (presumed fire sales) from which prices (CARs) recover along the lines

of the nonstationary model of Section 3. Second, sampling the paths of CARs at high frequency

(intraday) and calculating their associated quadratic variation allows us to recover the flow of

private information up to the parameter Θ from the quadratic variation implied by the model,

similar to the typical exercise of inverting the Black-Scholes formula to recover implied volatility.

We identify the remaining parameter Θ by maximum likelihood (ML), letting the empiricist infer

fundamentals and supply from the paths of CARs over the recovery window following each supply

shock. Plugging in turn the recovered flow into the formula of Theorem 1 produces as many curves

for price informativeness as there are supply shocks. To summarize these curves with just a few

numbers we follow the literature that models the term structure of interest rates and define similarly

measures of Level, Slope and Curvature of the shape of price informativeness.

4.1 Recovering private information flow from quadratic variation

We obtain a model-based “recovery theorem” for the model primitive function ϕ (the private

information flow) using a property of high-sampling frequencies. We start by writing the evolution

of equilibrium prices under the empiricist’s view:

dPt = τ ′t/τt · (F̂ c
t − Pt) · dt− a−1/2 · τ−1

t ·
(
1 + a · ϕ′

t

)
· dB̂c

t , (19)
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where B̂c is a Brownian motion under the empiricist’s probability measure. From the above we

introduce the following definition.

Definition 1. The diffusion of CAR in equilibrium at date t satisfies:

σt ≡
√

d⟨Pt⟩/dt︸ ︷︷ ︸
data-implied

√
QV

= a−1/2 · τ−1
t ·

(
1 + a · ϕ′

t

)︸ ︷︷ ︸
model-implied

√
QV

. (20)

In continuous time quadratic variation (QV) of CARs is observable. Hence, sampling the data

frequently enough we can recover the function ϕ from QV. Formally, we differentiate the idendity

in Definition 1 once and re-arrange it to obtain a second-order ODE for ϕ:

0 = a · σt · ϕ′′
t −

(
1 + a · ϕ′

t

) (
a · ϕ′

t · σ2
t + σ′

t

)
. (21)

The solution to this ODE is analytical and highlighted in the theorem below, the main theoretical

result of the paper.

Theorem 2. (Recovery) Let σt in Definition 1 be a given, observable function of time (the square

root of QV). The flow of private information is recovered as:

a · ϕt(Θ) = c− b+

∫ t

0

(
exp

(
−
∫ s
0 σu/a

1/2du
)
σs/a

1/2

1/c−
∫ s
0 exp

(
−
∫ v
0 σu/a1/2du

)
σ2
v/adv

− 1

)
ds. (B)

This function is nondecreasing (and finite) if:

(
inf

t∈[0,T ]
e
−

∫ t
0

σu

a1/2
du σt

a1/2
+

∫ t

0
e−

∫ v
0 σu/a1/2duσ

2
v

a
dv

)−1

≤ c <

(∫ T

0
e−

∫ v
0 σu/a1/2duσ

2
v

a
dv

)−1

. (22)

Let {ak} be the set of solutions (if any) to the following equation:

σT =

∫ T

τ
e
∫ T
v σu/a1/2duσ′

vdv. (23)

Then the interval in (22) is nonempty if a ≥ maxk ak (and possibly on other regions).

Theorem 2 shows that the flow of private information, ϕ, is recovered from QV up to the

parameterΘ. In particular, as a result of the parameter transformation in (17) the parameter a now

appears systematically multiplying QV, thus acting as a “scaling parameter” on QV. Interestingly,

monotonicity on ϕ imposes a lower and an upper bound on c ∈ Θ, investors’ initial average precision

on fundamentals (in units of noise, 1/a). In the empirical implementation we show these bounds

can be remarkably tight (mostly during crises), thus informative as to how high or low this precision

can be. Finally, since these bounds depend on a ∈ Θ, a parameter to be estimated, the interval in

(22) could be empty for certain values of a. Specifically, if (23) has no solution then this interval is

never empty, and if instead (23) has (possibly many) solutions {ak} then the interval is nonempty
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provided a is not “too low” (noise is not “too high”) in the sense that a ≥ maxk ak. In the empirical

implementation we find (23) always has a unique solution.

For the recovery formula of Theorem 2 to be empirically helpful we need time series of QVs,

which requires data at high frequency. We collect intraday transaction prices from the New York

Stock Exchange Trade and Quotes (NYSE TAQ) database. Our cleaning procedure follows the

approach of Barndorff-Nielsen, Reinhard Hansen, Lunde, and Shephard (2009) and removes entries

with transaction prices of zero, corrected trades (indicated by CORR = 0), and entries with ab-

normal sale conditions (trades for which COND includes a letter code other than ’E’ and ’F’). We

identify stocks by PERMNO, as opposed to ticker, because CRSP ticker often differ from those in

TAQ and because companies frequently change their TAQ tickers (e.g., due to M&A). We merge

TAQ tickers with PERMNO using the TAQ CRSP linking table available from WRDS. Intraday

prices in NYSE TAQ are not adjusted for dividends or stock splits occurring overnight. To compute

adjusted overnight returns, we follow Aı̈t-Sahalia et al. (2020), which ensures daily returns from

CRSP and the aggregation of intraday returns from TAQ data are aligned.12

To construct the quadratic variation of the portfolio of shocked firms (described in Section 2),

we index each day over the recovery period by t ∈ [0, T ]. Within each day there are 6.5 hours of

trading, and we sample intraday returns n times over this time period. We denote the intraday

sampling frequency by 1/n, which in most applications is taken to be 10-minutes, or n = 40 intraday

observations (including overnight returns). Approximating P in the model with the log-price of the

portfolio we obtain intraday returns as:

∆n
t,iP ≡ Pt−1+i/n − Pt−1+(i−1)/n, i = 1, ..., n. (24)

To handle asynchronicities in the data we use the previous-tick interpolation method to ensure

continuity in the data. Specifically, we choose Pt−1+i/n = Pt−1+i∗/n, where t − 1 + i ∗ /n is the

largest observation time before and including time t − 1 + i/n (Hayashi and Yoshida, 2005). In

addition, because in the model prices in equilibrium are diffusion processes—their path exhibits

no discontinuities—we remove jumps following one of the two standard techniques in the literature

(Mancini, 2001, 2009). Specifically, every day t we compute the following threshold:

vt,n = 4
√
BVt,nn

−0.49, (25)

where BVt,n ≡ π
2

∑n
i=2 |∆n

t,iP ||∆n
t,i−1P | denotes the bipower variation (Barndorff-Nielsen and Shep-

hard, 2004) of log-prices on day t. We then collect the continuous part of the portfolio returns on

12We use CRSP (unadjusted) open and close prices to calculate intraday open-to-close returns. Combining
these with adjusted (close-to-close) returns from CRSP, we can infer adjusted overnight returns (close-to-
open). Since CRSP open and close prices are carefully selected based on additional information beyond just
the sequence of trades, they are used as open and close prices for our dataset.
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day t in the following vector:

Yt =


∆n

t,1P · 1|∆n
t,1P |≤vt,1

...

∆n
t,nP · 1|∆n

t,nP |≤vt,n

 . (26)

In Section 2 we are in fact focusing on the portfolio’s abnormal returns in excess of factors that

the literature commonly views as capturing aggregate variation. We proceed analogously intraday

and remove aggregate variation from the portfolio’s quadratic variation following Aı̈t-Sahalia et al.

(2020). Let ∆n
t,iXk denote intraday log-returns on factor k and let there be K of them. Repeating

the steps above for each individual factor every day we compute a threhold vkt,n above which

absolute returns on factor k are considered discontinuous, and where bipower variation on factor

k is computed analogously. We then gather the continuous part of intraday log-returns on day t

across factors in a (n×K)−matrix:

Xt =


∆n

t,1X1 · 1|∆n
t,1X1|≤v1t,1

. . . ∆n
t,1XK · 1|∆n

t,1XK |≤vKt,1
...

∆n
t,nX1 · 1|∆n

t,nX1|≤v1t,n
. . . ∆n

t,nXK · 1|∆n
t,nXK |≤vKt,n

 . (27)

Regressing factors on portfolio returns using intraday variation we obtain on every day t a vector

of betas over the recovery period:

β̂t = (X′
tXt)

−1X′
tYt, t = 1, ..., T. (28)

Finally, we compute a daily time series of the continuous part of residual quadratic variation as:

σ̂2
t = Y′

tYt − β̂
′
tX

′
tXtβ̂t, t = 1, ..., T (29)

which we use to proxy for QV, σ2
t , the main input to the recovery formula of Theorem 2.

As an illustration we plot in Figure 3 the average (across the 300 shocks of the sample) of QV

over the recovery window, normalizing by the average level of QV after 200 days following the

shock. On average QV of the portfolio of shocked firms is 6% higher immediately after the shock

relative to what it will be 200 days later; it declines fast within the next 100 days following the

shock, confirming that most variation in returns occurs over a short time period. We keep in mind,

however, that the pattern in Figure 3 is only an average, and that individual patterns for each

shock may look significantly different.
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Figure 3: Average QV across recoveries. This plot illustrates the average 20-day
moving average of QV, normalized by the level at 200 days after the shock (T=300).

4.2 Identifying remaining model primitives Θ

At this stage we have constructed time series of portfolio CARs, {Pn·∆}Nn=0, and of portfolio QV,

{σn·∆}Nn=0, sampled at a discrete frequency, ∆ = T/N . Given the procedure above this frequency

is daily, N = 252. Thanks to Theorem 2 we recover time series of private information flow,

{ϕn·∆(Θ)}Nn=0, and thanks to Theorem 1 we then recover time series of price informativeness,

{τ cn·∆(Θ)}Nn=0, for parameter Θ given. The remaining task is to identify Θ (exactly 3 numbers)

using these daily time series.

The usual exercise is to let the empiricist each day (n−1) ·∆, and over the N days that span the

recovery window, predict what the next CAR datapoint will be, µn·∆|(n−1)·∆ ≡ E[Pn·∆|F c
(n−1)·∆],

with error variance, Σn·∆|(n−1)·∆ ≡ Var[Pn·∆|F c
(n−1)·∆], conditional on the history of CARs, F c

(n−1)·∆,

up to this day. In this Gaussian framework and in discrete time (daily) the log-likelihood of a given

path of CARs, {Pn·∆}Nn=0, up to time T relative to these predictions is:

LT ≡ −1

2

N∑
n=1

(
log(2 · π) + log(Σn·∆|(n−1)·∆)

)
− ℓ(Θ), (30)

where ℓ(·) is the Sum of Squared Errors (SSE) of these predictions defined in the proposition below.

Another benefit of constructing QV at high frequency and mapping it into the diffusion of CARs

through the ODE in (21) is that (see Appendix A.3 for a precise statement):

Σn·∆|(n−1)·∆ ≈ σ2
n·∆ ·∆, (31)

where the approximation is due to the discretization (it holds exactly in continuous time, which is
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the meaning of Definition 1). Hence, because we observe QV (the right-hand side), maximizing the

log-likelihood in (30) is equivalent to minimizing the SSE of the Kalman filter.13

Proposition 1. Given time series of QV, {σn·∆}Nn=0, and of CARs, {Pn·∆}Nn=0, the Sum of Squared

Errors (SSE) of the Kalman filter satisfies:

ℓ(Θ) ≡ 1

2

N∑
n=1

(
Pn·∆ − µn·∆|(n−1)·∆

σ(n−1)·∆
√
∆

)2

, (33)

where the empiricist’s posterior prediction of next CAR datapoint is:

µn·∆|(n−1)·∆ =
a · τ(n−1)·∆

a · τn·∆
P(n−1)·∆ +

(
1−

a · τ(n−1)·∆

a · τn·∆

)
F̂ c
(n−1)·∆, (34)

and where the empiricist’s posterior estimate of fundamentals is:

F̂ c
n·∆ =

1

a · τ cn·∆

n∑
k=0

(a · τ ck·∆ − a · τ c(k−1)·∆)
a · τk·∆Pk·∆ − a · τ c(k−1)·∆P(k−1)·∆

a · τk·∆ − a · τ(k−1)·∆
. (35)

Empiricist’s and average investors’ precisions are discretized similarly as:

a · τ cn·∆ = b+
n∑

k=1

(a · ϕn·∆(Θ)− a · ϕ(n−1)·∆(Θ))2/∆ (36)

a · τn·∆ = a · τ cn·∆ + a · ϕn·∆(Θ), (37)

where a · ϕn·∆(Θ) is given in Theorem 2.

Formally, identifying remaining parameters Θ through Maximum Likelihood (ML) is equivalent

13In continuous time the sum of squared errors using integration by parts and removing the constant is:

LT ≡
∫ T

0

(
τ ′t/τ t · (F̂ c

t − Pt)

σt

)2

dt− 2

∫ T

0

τ ′t/τ t · (F̂ c
t − Pt)

σ2
t

dPt. (32)

This formulation of the ML problem is standard in this context (e.g., Liptser and Shiryaev (2001)) because
quadratic variation is known. In particular, the literature defines a “reference measure” P0 under which
the CAR process does not depend on parameters Θ. This measure P0 is usually taken to be that under
which σ−1dP is a Brownian motion. The log-likelihood function then corresponds to the Radon-Nikodym
derivative, dP/dP0|Fc

T
and the objective in Eq. (32) corresponds to the negative of the log of it.
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to solving the following constrained least-squares problem:

min
Θ∈R3

+

ℓ(Θ) (C)

s.t. 1/c ≤ min
n∈{0,...,N}

e−
∑n

k=1 σn·∆/a1/2·∆σn·∆/a
1/2 +

n∑
k=1

e−
∑k

l=1 σl·∆/a1/2·∆σ2
k·∆/a∆ (38)

1/c >
N∑

n=1

e−
∑n

k=1 σk·∆/a1/2·∆σ2
n·∆/a ·∆ (39)

a ≥ max
k

ak solving σN ·∆ =
N∑

n=1

e
∑N

k=n σk/a
1/2∆(σk·∆ − σ(k−1)·∆), (40)

where the constraints (38) and (39) are discretized versions of (22) and the equation to be solved by

{ak}k in (40) is a discretized version of (23). We solve this problem numerically using a global opti-

mization technique (e.g., Differential Evolution in Mathematica) under some regularization.14

We winsorize QV and abnormal returns at the conventional 1% level.

Program (C) concludes the recovery procedure, and we can now illustrate how it works with

a specific shock. Consider the shock that occurred on February 2016 with an associated recovery

period running through February 2017, and involving a portfolio of 272 shocked firms. The first

column of Figure 4 plots the associated CAR (upper panel) and the square root of quadratic

variation constructed in Section 4.1 (lower plot). We see that CARs level off at 10% and QV peaks

at 12% following the shock and then drops progressively over the next 100 days. Solving program

(C) we recover the parameter Θ, which we plug along with the time series of QV in the recovery

formula (B), which gives the red curve for the private information flow (middle panel). We then

plug this curve in formula (A), which gives the blue curve for price informativeness. This procedure

produces as many such curves for price informativeness as there are shocks (25 years × 12 months

= 300 shocks) over their associated yearly recovery period.

4.3 Summarizing the shape of price informativeness

We would like to describe the 300 curves of price informativeness the procedure delivers (such as

the one illustrated in the right panel of Figure 4) in terms of summary statistics. A large literature

in fixed income faces a similar task in describing the term structure of interest rates, which is

commonly summarized with its level, slope and curvature. We define these three statistics next.

14Regularization concerns the upper bound in (22), which holds with strict inequality. Approaching this
upper bound will cause the recovered function ϕt to explode at T . To prevent this outcome we introduce a
quadratic penalty in the SSE objective (C) on approaching this upper bound, setting the penalty parameter
in a way that it does not dominate the objective while preventing explosion.

22



0 50 100 150 200 250

0

0.02

0.04

0.06

0.08

0.1

0.12

Day

C
A
R

Data input

0 50 100 150 200 250
8.2

8.4

8.6

8.8

9

9.2

Day

ϕ
t

Private information flow

0 50 100 150 200 250
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Day

lo
g
(τ

c t
)

(Log-)Price informativeness

0 50 100 150 200 250

0.02

0.04

0.06

0.08

0.1

0.12

Day

σ
t

M
L
in
(C
)

fo
rm
ul
a
(B
)

formula (A)

Figure 4: Illustration of methodological steps. This figure illustrates the recovery
method for a given shock, which occurred on February 2016. The first column represents
data inputs, which consist of CAR (upper panel) and the square root of quadratic variation
constructed in Section 4.1 (lower plot). To get to the second column we apply the recovery
formula (B) and solve the constrained least-squares problem in (C), which gives the curve
for the private information flow (in red). To get to the third column we apply formula (A),
which gives the curve for price informativeness (in blue).

Definition 2. Measuring price informativeness in logs over the recovery window (t, t+T ] following

the shock at month t, its level (L), slope (S) and curvature (C) are:

Lt ≡ log(τ ct ) ≡ log(τF ), (41)

St ≡ log(τ ct+T )− log(τ ct ), (42)

Ct ≡ log(τ ct+T ) + log(τ ct )− 2 · log(τ ct+T/2). (43)

In Figure 5 we illustrate what these statistics are meant to capture. Note first that each statistic

measures price informativeness in logs, as its magnitude may vary substantially across shocks. The

black line represents a curve of price informativeness for a given shock over the yearly recovery

window. Its level (in red in the left panel) is the empiricist’s prior precision regarding fundamentals

(in logs), one of the parameters Θ we estimate in Section 4.2. Its inverse, 1/τF , thus represents

the empiricist’s prior uncertainty upon shocks, and can be thought of as the largest amount of

information that she can possibly learn about fundamentals for a given shock. Slope (middle panel)

measures the increase in price informativeness over the recovery window, and thus really captures

how much information the empiricist effectively learns from prices over this period. Finally, cur-

vature (right panel) captures how fast this information becomes available to the empiricist. If the

curve is concave (convex), information flows from prices early (late), and thus it is easier (more
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difficult) for the empiricist to obtain quick information.
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Figure 5: Level, slope and curvature of price informativeness. This plot illustrates
the level, slope and curvature of the price informativeness curve, as defined in Definition 2.

5 The shape of price informativeness over two decades

For each shock we calculate the three numbers of Definition 2, meaning that we get three time series

with as many datapoints as there are shocks in the sample (300). We first study the magnitude

and variation of these time series, then how they differ across firm characteristics, and finally we

examine how they compare to Ebit-based measures.

5.1 Time-series patterns

We present the output of the recovery procedure of Section 4 in Figure 6. Each panel plots level,

slope and curvature of price informativeness (as defined in Definition 2), respectively, over the

sample period (1997 through 2022) at the monthly frequency. The purpose of this section is to

understand whether their time variation and their magnitude make sense. We start by examining

their behavior during the three crises that occurred over our sample: the Dotcom bubble, the global

financial crisis of 2008, and the Covid-19 pandemic (all indicated as grey areas in Figure 6). We also

examine their fitted trend (dashed red lines) over the sample period. We then discuss magnitudes

from the perspective of classical views on market efficiency (Shiller, 1981; Black, 1986). Finally, we

verify that these trends cannot be explained by changes in characteristics of shocked firms in our

sample (e.g, analyst coverage or price inelasticities) or changes in market conditions (e.g., VIX).

5.1.1 Trends and variation across major events

Unsurprisingly, learning from prices is substantially more difficult during crises. First, level and

slope fall sharply on these occasions, with a particularly impressive drop upon the global financial

crisis. Therefore, not only does fundamental uncertainty rise during crises, implying there is a

larger amount of information to be learnt, but also less information can be learnt from prices over

the recovery window. Second, curvature spikes (the information flow becomes strongly convex),
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Figure 6: Level, slope and curvature of price informativeness over time. This
graph shows the 1-year moving average of the estimated summary statistics of price in-
formativeness as defined in Definition 2, along with a fitted trend line. The shaded areas
represent economic crises (Dotcom bubble, global financial crisis and Covid-19 pandemic).

meaning that fundamental information is slower to make its way through prices. Interestingly,

towards the end of crises the flow of price informativeness reverses equally fast, with a sudden

rebound in level (and slope to some extent) along with a sharp drop in curvature (precision rises,

information becomes more abundant and its flow accelerates markedly); this reversal in the shape

of price informativeness appears to systematically signal the end of a crisis in our sample.

Two trends are unmistakable. Over the sample period, but mostly over the last decade, the

level of price informativeness rose and its slope declined. More specifically, whereas the decline in

prior fundamental uncertainty (the rising level) has been quite steady over the sample period (apart

from crises episodes) slope rose during the early part of the sample but started declining distinctly

after the financial crisis. We will further show that the upward trend in curvature is significant,

with curvature swings becoming weaker over time. The picture is quite clear: over the last decade

prior uncertainty—the total amount to be learnt about fundamentals—has decreased, and prices

have not only revealed less information but have also incorporated this information more slowly.

Level (or prior fundamental precision, τF ) is particularly important in the analysis because it

defines learning potential for a given shock (point in time). Unfortunately, it is the only parameter

in Θ that is unbounded. However, investors’ average initial precision, τF + ϕ0, is a closely related

number for which Theorem 2 provides bounds in (22), which we plot in Figure 7. These bounds (in

dashed blue) are quite tight, particularly so in crises, with investors’ average precision hitting the

lower bound when they occur. These bounds are thus informative, since they provide a reference

for what is a high or low level of precision. Given the role τF plays in the analysis, it would be

helpful to obtain a similar reference for it. We now introduce an argument that will precisely do

this, allowing us to appreciate magnitudes (what is a low or high level of price informativeness).
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Figure 7: Investors’ average initial precision and its bounds. This figure presents
the 1-year moving average of investors’ average initial precision, the sum of initial fundamen-
tal precision and the average initial precision of private information in logs, log(τF,t +Φ0,t).
Average initial precision is bounded above and below as per the monotonicity condition
(22) in Theorem 2, and these bounds are indicated by dotted blue lines. Shaded gray areas
denote economic crises (Dotcom bubble, global financial crisis and Covid-19 pandemic).

5.1.2 Fischer Black’s rule of thumb

In his presidential address Fischer Black conjectures “almost all markets are efficient”, meaning

“price is within a factor 2 of value” at least 90% of the time (Black, 1986). This claim can

be formulated mathematically in the model, and we now show it implies an upper bound on

fundamental precision, τF , along the lines of the classical inequalities formulated in Shiller (1981).

We define CAR using the CAR signal in Eq. (15), which takes the intuitive form “value plus noise”

consistent with what we think Fischer Black’s intuition is:

CAR0,T =
τT · PT − τ0 · P0

τT − τ0
= F̃ − a1/2

a · τT − a · τ0
·
∫ T

0
(1 + a · ϕ′

t) · dBm,t. (44)

We then compute what Kyle and Obizhaeva (2019) refer to as “pricing accuracy” over the recovery

period (in units of noise 1/a, and using Ito isometry):

a ·Var
[
CAR0,T

∣∣ F̃]−1
=

(a · τT − a · τ0)2∫ T
0 (1 + a · ϕ′

t)
2dt

(45)

=
(a · τT − a · τ0)2∫ T

0

exp(−2
∫ t
0 σu/a1/2du)σ2

t /a

(1/c−
∫ t
0 exp(−

∫ v
0 σu/a1/2du)σ2

v/adv)
2dt

, (46)
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where the second line uses the recovery result of Theorem 2. Since the ratio of two normals is

Cauchy distributed the ratio of CAR to value follows:

CAR0,T /F̃ ∼ Cauchy

(
1,

τ
1/2
F

Var
[
CAR0,T

∣∣ F̃]−1/2

︸ ︷︷ ︸
≡β

)
, (47)

where β captures the dispersion of the CAR-to-value ratio around 1. Hence, this ratio is “within a

factor” x exactly 90% of the time if:

P
[
1/x ≤ CAR0,T /F̃ ≤ x

∣∣∣CAR0,T /F̃ ≥ 0
]
=

1
π

(
tan−1

(
x−1
β

)
− tan−1

(
1/x−1

β

))
1/2− tan−1

(
− 1

β

) (48)

≡ 90%. (49)

Note that for “within a factor of value” to be meaningful CAR and value must have the same sign,

which in this Gaussian framework is not necessarily the case. That is, the ratio of the two must

always be positive, hence the conditioning in (48) above. Alternatively, if one thinks of CAR0,T as

log-returns and F̃ as log-fundamentals, the ratio of the two is the log-difference between the two,

and thus retains normality (Kyle and Obizhaeva, 2019):

P
[

1

log(x)
≤ CAR0,T − F̃ ≤ log(x)

]
= Φ

 log(x)

V
[
CAR0,T

∣∣ F̃]1/2
− Φ

 − log(x)

V
[
CAR0,T

∣∣ F̃]1/2
 , (50)

where Φ(·) denotes the standard normal CDF.

Intuitively, the first equation (48) constrains how big the dispersion of prices around value can

be and, with a factor x ≡ 2, is equivalent to β ≈ 0.1541. Hence, for the CAR-to-value ratio to be

within a factor 2 at least 90% of the time the following inequality must hold:

τF ≤ 0.024 ·Var
[
CAR0,T

∣∣ F̃]−1
, (B1)

which corresponds to Fischer Black’s conjecture in our model. The second equation (50) instead

constrains the log-distance between CAR and value, and thus yields an inequality on pricing accu-

racy in absolute terms (also assuming x ≡ 2):

1.64/ log(2) ≤ Var
[
CAR0,T

∣∣ F̃]−1/2
. (B2)

This inequality (B2) represents the natural interpretation of market efficiency in a CARA-normal

context, yet it is unrelated to fundamental precision, τF . In contrast, the other inequality (B1) is

similar to those of Shiller (1981), in the sense that market efficiency requires fundamental precision,
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τF , and thus level to be within some fraction of pricing accuracy. The difference is that this fraction

in the model reflects a “rule of thumb” (namely, the dispersion parameter of a Cauchy so that 90%

of its mass is within a factor 2 of its center), whereas this fraction in Shiller (1981) results from

proper optimization (namely, minimizing pricing accuracy for a given level of τF ).

Since “the factor of 2 is arbitrary, of course” (Black, 1986) the conjecture really hinges on the

frequency of inefficiencies. Therefore, we conduct the following, additional exercise: we use our

recovered estimate of β and solve equation (48) for x instead. That is, we compute the CAR-to-

value factor x necessary for markets to be efficient 90% of the time. We plot this factor (the solution

to (48)) in the right panel of Figure 8, and the two versions (B1) and (B2) of Fischer Black’s upper

bound in the left and middle panel, respectively. Shaded red areas denote times at which Fischer

Black would deem markets inefficient.

19
98

20
08

20
22

3

5

Year

L
ev
el
,
L
t

Fischer Black’s bound (B1)

1-year MA
Bound (B1)

19
98

20
08

20
22

0.
2

lo
g
(2
)/
1.
64

0.
6

Year

p
ri
ci
n
g
st
an

d
ar
d
er
ro
r

Fischer Black’s bound (B2)

1-year MA
Bound (B2)

19
98

20
08

20
22

1

2

3

4

5

Year

fa
ct
or

of
va
lu
e,

x

Bound on CAR-to-value ratio

1-year MA
factor=2 (Black)

Figure 8: Fischer Black’s upper bound and bound on CAR-to-value ratio. The
left panel compares level, L, of Definition 2 (in black) to Fischer Black’s bound (B1) (in
red). The middle panel compares standard pricing error (in black) to Fischer Black’s bound
(B2) (in red). The right panel compares the minimum CAR-to-value ratio necessary to
make Fischer Black’s conjecture that the market is efficient 90% of the time true as per
(48), and compares it to a factor 2 as proposed by Fischer Black. Shaded red areas highlight
periods during which markets become inefficient under each criterion. The gray shaded areas
represent economic crises (Dotcom bubble, global financial crisis and Covid-19 pandemic).

We can now better interpret the upward trend in fundamental precision, τF , and its magnitude.

Focus first on the right panel in Figure 8, which plots the CAR-to-value factor for which the

conjecture that markets are efficient 90% of the time is true under the factual dispersion estimate,

β. In our sample a factor 2 (lower dashed line) is too optimistic, which explains why periods of

inefficiencies (the shaded red areas in the other two panels) occur frequently. A factor 3 (upper

dashed line) appears better aligned with the conjecture, which is unsurprising if we consider that

firms in our sample presumably experienced a large supply shock and thus that their value should

be particularly far from their price. Looking now at the left panel we first confirm the intuition that

crises are systematically associated with inefficient markets. This intuition is also verified under
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the other bound formulation (B2) (middle panel) during the first two crises. Furthermore, under

criterion (B1) these inefficiencies were confined to the global financial crisis but precede and extend

beyond the Dotcom bubble and, most notably, the pandemic.

What stands out is the long period of substantial inefficiency surrounding the Covid-19 pan-

demic (under both criteria (B1) and (B2)). This fact suggests that over the last five years of the

sample the decline in both fundamental uncertainty (or rise in level) and slope in fact result from

inefficient prices. Perhaps intuition would suggest otherwise, namely that prices are more efficient

when fundamental precision is higher. Yet, this intuition ignores Shiller (1981)’s insight: what

matters is how fundamental precision rises relative to pricing accuracy, which is the meaning of

the inequality in (B1) (and absent in (B2)). We conclude that the rise in level and the decline in

slope over the sample period do not translate in an equivalent improvement in pricing accuracy,

especially so in recent years.

A stronger definition of efficiency, different from that of Shiller (1981) and Black (1986), re-

quires that prices instantly reflect all available information (Fama, 1970; LeRoy, 1989). Prices are

then efficient if they follow a martingale. In our model the martingale hypothesis fails because

price increments in (19) exhibit a trend that even the empircist can predict. However, our notion

of curvature is tightly linked to this definition: if we accept the idea that prices do not reflect

information instantly but appropriately fast, then this is what curvature precisely captures. The

upward trend in the right panel of Figure 6 then confirms our previous conclusion—prices have

incorporated information significantly more slowly over the last two decades.

5.1.3 Trends and changes in the characteristics of shocked firms

We are concerned that changes in characteristics of shocked firms may explain the trends we

describe. Our sample is arguably specific in that it involves only a fraction of stocks in the market

that experience a liquidity shock, whereas evaluating aggregate level and variation typically entails

looking at the entire CRSP universe. We now want to verify that trends in the shape of price

informativeness are not explained by changes in the composition of the sample of firms we select. For

instance, these firms may have become smaller or less liquid. Furthermore, because our empirical

framework is based on supply shocks (MFFlow), the patterns we describe could be related to

patterns in price inelasticity (Koijen and Yogo, 2019), which certainly vary over time; they are

also likely related to information production, e.g., analysts coverage, and to aggregate uncertainty

(VIX).

We first examine how our sample of shocked firms differs from the average firm in the NYSE,

AMEX and Nasdaq stock universe along traditional characteristics, and thus how representative it is

for the whole stock market. In Table 1 we present the mean and median difference between shocked

firms and the full sample across Size, Value, Liquidity and analyst Coverage. Formally, Size and

V alue are the log of market capitalization and book-to-market ratio, respectively, with book values

calculated following Davis, Fama, and French (2000); Liquidity is minus Amihud (2002)’s measure
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of illiquidity; analyst Coverage is constructed from I/B/E/S unadjusted summary file by summing

the number of forecasts for a given stock across all fiscal periods.15 In addition, since liquidity is

strongly correlated with size we also report it orthogonalized to size, Liquidity⊥. Similarly, following

Lee and So (2017) we report analyst coverage, Coverage⊥, orthogonalized to size, turnover and past

returns, with the intention of removing the component of coverage attributed to these variables.16

Size V alue Liquidity Liquidity⊥ Coverage Coverage⊥

∆mean -0.15*** 0.10*** 1.92*** 2.00*** -0.06 0.05*

(-2.98) (6.24) (8.69) (9.15) (-1.42) (1.80)

∆median -0.10* 0.09*** -0.03*** 0.66*** -0.12** 0.14***

(-1.78) (6.02) (-4.85) (5.41) (-2.44) (5.31)

Table 1: Summary statistics. This table presents average differences in mean and
median of monthly cross-sectional distributions of firm characteristics between the sample
of shocked stocks and the full stock universe consisting of US common stocks traded on
NASDAQ, AMEX and NYSE excluding shocked stocks. Selected characteristics include
Size and V alue (log of market cap and book-to-market ratio), Liquidity (minus Amihud
(2002)’s illiquidity measure) and analyst Coverage (log of one plus the sum of forecasts for
a given stock in the month in which the shock occurs), with Coverage⊥ denoting abnormal
Coverage following (Lee and So, 2017) and Liquidity⊥ liquidity orthogonalized to Size.
Book values are calculated following Davis et al. (2000). V alue, Size, and Liquidity are
calculated at the end of fiscal year t and are valid from July t+ 1 through June t+ 2. The
sample spans 300 months, from 1997 through 2021. T-stats are based on standard errors
adjusted using Newey and West (1987) with 5 lags, and are shown in parentheses. *, **,
and *** denote significance levels at 10%, 5%, and 1%, respectively.

Table 1 confirms the (known) fact that firms mutual funds hold tend to be smaller stocks

(Berger, 2023; Wardlaw, 2020). They have higher book-to-market ratios relative to other firms

and, although median Coverage suggests they receive less attention from analysts, they in fact re-

ceive higher coverage once we account for the relatively smaller size of shocked firms (Coverage⊥).

Similarly, when comparing median with mean Liquidity it seems higher liquidity is due to outliers,

yet after controlling for size both median and mean Liquidity⊥ indicate shocked firms are unam-

biguously more liquid. Importantly, this result suggests that slow recovery in CARs following a

shock (e.g., as in Figure 1 or Figure 2) is not easily explained by slow-moving capital (Duffie, 2010).

We now test whether these deviations in characteristics relative to the entire CRSP universe

affect the trends we plotted in Figure 6 and described in the previous sections. For each of the three

15In the I/B/E/S unadjusted summary file, we get the total number of forecasts across all fiscal periods
by summing “NUMEST” for each ticker and month (“STATPERS”). Following Lee and So (2017) we take
the log of it plus one to obtain Coverage.

16Turnover is calculated as trading volume scaled by shares outstanding, and past performance is measured
as the firm’s cumulative market-adjusted return over the past 12 months.
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statistics (PIt) of price informativeness in Definition 2 we estimate the following specification:

PIt = α+ Trend× t

T
+
∑
i

controlsi,t + ϵt, (51)

where the ratio, t/T , divides calendar time, in our case the t−th month (shock) of the sample, by the

total number of shocks, T = 300, so that it takes values between 0 and 1, with Trend thus measuring

the average trend in the relevant statistic of price informativeness. In addition, we include a set of

control variables, controlsi, which contains those used for the summary statistics of Table 1, namely

Size, Value, log(Liquidity⊥), and Coverage⊥.17 To this list we add the CBOE S&P 500 volatility

index (V IX) as a measure of aggregate uncertainty, LIQPS from Pástor and Stambaugh (2003) as

a market-wide liquidity measure, and a measure of price inelasticity constructed following van der

Beck (2022), all of which represent additional variables that may influence trends.18 We report

estimates of regression (51) in Table 2 for the three statistics of price informativeness.

The main message is, not only do trends persist when including the set of controls (comparing

the left and right Trend estimate in each column) but they even become statistically stronger.

For instance, the trend in curvature in Figure 6 is insignificant but becomes strongly significant

when accounting for control variables. This result seems to suggest that the particularities of our

sample do not drive our main conclusions regarding trends. Yet, although not a determinant of

trends, some control variables are strongly related to price informativeness, among which size and

orthogonalized liquidity stand out (we will see this in more details in the next section). In contrast,

others appear largely unrelated. For instance, price inelasticities—the strength of the relation

between nonfundamental price changes and investor demand—is directly linked to the magnitude

of the shock to prices. Although the shock itself does not directly enter our estimation (we only

consider the recovery period following it), its magnitude could indirectly affect our estimates. Yet,

price inelasticities appear unrelated to our findings. In unreported results we also verify that the

magnitude of the shock, the product of price inelasticities with the intensity of fire sales, is equally

unrelated.

Given the strong relation of certain firm characteristics with price informativeness in the time

series, these characteristics could play an important role for price informativeness in the cross

section of firms, which is what we look at next.

5.2 Cross-sectional patterns

To examine differences in the shape of price informativeness across stocks, we form subgroups of

firms along a given characteristic. Specifically, we conduct univariate portfolio sorts on each of

17We use the log of Liquidity to mitigate the effect of outliers in the regression.
18We measure monthly price inelasticity of shocked stocks by estimating the slope coefficients of cross-

sectional regressions of abnormal returns on MFflow. We compute abnormal returns relative to the Carhart
(1997) factors and industry portfolios (health, manufacturing, hitech and consumer goods), with exposures
estimated based on trailing 60 monthly observations.
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Level (Lt) Slope (St) Curvature (Ct)

Const 3.92*** 3.91*** 2.33*** 3.36*** -0.11 -0.33

(19.89) (10.73) (8.46) (6.39) (-0.86) (-1.42)

Trend 1.26*** 1.88*** -0.81* -1.9*** 0.2 0.67***

(3.53) (4.51) (-1.84) (-3.24) (1.04) (2.64)

Size 0.59*** -0.99*** 0.18

(3.19) (-4.29) (1.72)

V alue 0.47 -0.0 0.21

(0.72) (-0.0) (0.91)

log(Liquidity⊥) -0.30 1.42*** 0.89***

(-0.64) (2.41) (2.85)

Coverage⊥ 1.1* -0.81 0.98***

(1.86) (-1.05) (3.17)

Inelasticity -0.2 0.26 0.15

(-1.33) (0.81) (0.96)

LIQPS 0.28 1.82* 0.84

(0.27) (1.62) (1.13)

V IX -0.02 -0.02 -0.01*

(-1.56) (-1.4) (-1.89)

Table 2: Firm characteristics and aggregate price informativeness. This table
shows parameter estimates of regression (51). The set of controls includes Size, Value, (log
of) Liquidity⊥ as described in Table 1, along with the liquidity measure of Pástor and
Stambaugh (2003), a measure of price elasticity constructed following van der Beck (2022)
and VIX as a measure of uncertainty. T-statistics are shown in parentheses and are made
robust against autocorrelation and heteroskedasticity following (Newey and West, 1987) by
using 5 lags. *, **, *** denote the 10%, 5%, and 1% significance levels, respectively.

the characteristics listed in Table 1 (Size, V alue, Liquidity⊥ and Coverage⊥). Using the median

as a breakpoint we form two subportfolios for each characteristic, e.g., small and large stocks.

We then follow the same procedure as for the whole sample: for each of these subportfolios we

compute separately CAR and QV, and apply the recovery procedure of Section 4. Table 3 reports

the differences in the three statistics of Definition 2 between large and small, growth and value,

high- and low-liquidity and coverage firms, along with their corresponding t-statistic.
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Size Value Liquidity⊥ Coverage⊥

Lt 1.22*** -0.27** -0.97*** -0.20

(9.22) (-2.46) (-8.13) (-1.49)

St -0.84*** 0.40*** 0.62*** 0.04

(-5.28) (3.04) (4.30) (0.33)

Ct 0.13*** -0.06 -0.10** -0.01

(2.64) (-1.54) (-2.19) (-0.41)

Table 3: Cross-sectional differences in price informativeness. This table presents
the average differences between the three statistics of price informativeness (see Definition
2) across the following characteristics: Size, Value, Liquidity⊥ and Coverage⊥. The average
is calculated from the differences in these statistics between two portfolios that are formed
using the cross-sectional median of each characteristic as the breakpoint. These portfolios
are created separately for each recovery period. T-statistics are shown in parentheses and
are made robust against autocorrelation and heteroskedasticity following (Newey and West,
1987) by using 5 lags. *, **, *** denote the 10%, 5%, and 1% significance levels, respectively.

To a large extent, size and (orthogonalized) liquidity are the two characteristics that matter

most for the shape of price informativeness across firms, adding to our conclusions regarding the

time-series patterns of Table 2. Because larger firms exhibit lower fundamental uncertainty (higher

level) they offer less potential for learning and less information to be learnt from their price (lower

slope). More surprisingly the flow of information is slower (higher curvature) for larger firms. After

controlling for size liquidity exhibits exact opposite patterns relative to size. This result is intuitive

regarding slope and curvature: higher liquidity is associated with a larger and faster amount of

information. At first the result that more liquid firms are associated with greater fundamental

uncertainty (lower level) is puzzling. Liquidity in the model is measured by (minus the inverse

of) the price coefficient on the supply (e.g., He and Wang (1995), p. 938), which in our case is

−1/λ2 ≡ a1/2 · τ , and since average precision τ falls with fundamental uncertainty so does liquidity.

Yet there is an offsetting effect, which dominates: more liquid firms are also subject to tremendously

less noise trading, 1/a, (the gap in a between high- and low-liquidity firms is 0.47 with a t-statistic of

11.13), which translates directly (and also indirectly through τ) into higher liquidity indeed. Value

also influences slope, with high book-to-market firms offering more to learn from prices (higher

slope). Yet, our interpretation is that size and liquidity are the two key determinants of the shape

of price informativeness across stocks.

What we find most intriguing is that size and liquidity are in fact of vanishing importance for

the shape of price informativeness over the sample period. This conclusion is clearly apparent in

Figure 9, which plots the difference in level (black), slope (red) and curvature (blue) over the sample
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period between large and small firms (left panel) and liquid and illiquid firms (right panel), with

shaded areas denoting 95% confidence intervals. The shape of price informativeness has become

insensitive to size, which is also true for liquidity apart from the difference in level that somewhat

persists. Interestingly, this result may speak to the “data feedback loop” (e.g., Begenau et al.

(2018) or Veldkamp (2023)), which postulates that large firms benefit more from data, generate

more data and thus grow even larger. The trends in Figure 9, which concentrate in the last decade,

suggest this mechanism may have become less prevalent among shocked firms.
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Figure 9: Trends in cross-sectional differences. This figure plots the trends in cross-
sectional differences between large and small firms (Size), as well as (orthogonalized) liquid
and illiquid firms (Liquidity⊥) across the three statistics: level (in black), slope (in red)
and curvature (in blue). These trends are computed from regressing the differences in these
three statistics between the two groups on a monthly normalized calendar variable. The 95%
confidence intervals are shown as shaded areas around the estimated trendline. Standard
errors are adjusted using the Newey-West method with 5 lags (Newey and West, 1987).

5.3 Comparison with Ebit-based regressions

A first difference between the procedure we propose and Ebit-based regressions is the choice of proxy.

We proxy for noise using supply shocks, as opposed to value using earnings, with the advantage of

its horizon independence but at the cost of focusing on a subset of shocked firms. Since Ebit-based

regressions speak to the substantially broader CRSP universe, our first objective is to understand

how these regressions behave within our sample of shocked firms. A second difference is that we

use intraday data to recover curves of price informativeness, whereas Ebit-based regressions use

quarterly data to produce a statistic of price informativeness that is related to their R2. Therefore,

our second objective is to understand how this statistic relates to our curves of price informativeness.
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The regression approach regresses future Ebit on market prices. In the literature this regression

either exploits cross-sectional variation (Bai et al., 2016; Farboodi et al., 2022) or time-series varia-

tion (Davila and Parlatore, 2023). Since our own procedure relies on time-series variation we follow

the latter approach, henceforth DP. Our empirical framework identifies a fire sales event, following

which a gap between value and prices supposedly forms, and that the market subsequently closes.

DP identify this gap in terms of how quarterly log-returns, ∆pit, on stock i at date t respond to a

change in Ebit over the next x quarters (usually 4, or 1 year):

∆pit = β0 + β1∆yit+x + et, (52)

where ∆yit+x is computed as the log of 1 plus the ratio of the absolute change in Ebit and current

book value on stock i. Thus the extent to which the market closes the gap is the associated R2,

the fraction of variation in log returns that ∆yit+x explains, and which we refer to as RDP .

There are two differences in the way we implement this regression relative to DP. We do not

account for public information other than returns (e.g., past earnings or profitability), as these

controls are absent in our methodology. Yet, following our own approach and consistent with that

in Farboodi et al. (2022) we “strip out” common factors in returns, that is we compute ∆pit following

the abnormal returns construction of Section 2.3 in excess of the Carhart (1997) factors and five-

industry portfolios (at the quarterly frequency). Similarly, we remove the aggregate component in

in Ebit growth, meaning that we focus on firm-specific cashflows, following Farboodi et al. (2022)

who define market Ebit growth as the average across S&P 500 firms, then regress individual Ebit

growth on it (and a constant) and track residuals.

A remaining difficulty is to synchronize the regression in (52) with the yearly recovery window

of our own procedure. The problem is tied to the quarterly sampling frequency of Ebit, which

necessitates a longer window than just a year (4 datapoints at the quarterly frequency) to estimate

this regression. Therefore, to these 4 datapoints, we append a window that looks back into the

6.25 years preceding each shock, thus accounting together with the recovery window that follows

the shock for a total of 30 quarters (observations) for each shock, a minimum to achieve reliable

estimates. The use of a lookback window is not ideal yet necessary due to the frequency of Ebit

data. Finally, since each regression is run quarterly we pool the monthly shocked stocks in each

quarter.

Each quarter t we obtain an estimate, RDP
t , which we can now map into our curves of price

informativeness. Formally, in the model the R2 of regressing fundamentals, F̃ , on the history of

CARs, (Pt)t≤1/4, over the next quarter following the shock is:

Rthis paper ≡
τ c1/4 − τF

τ c1/4
(53)

≈ exp(S)

exp(L) + exp(S)
, (54)
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where the first equality corresponds to DP’s equation (5), and where we use a quarterly window,

as opposed to the whole recovery window, to match the quarterly variation the regression in (52)

exploits. The second equality shows that DP’s measure summarizes a curve of price informativeness

with the ratio of its slope to its terminal point. This measure is thus related to level and slope but

separate from curvature, how quickly information becomes available. Figure 10 plots RDP averaged

across shocked firms (left panel) and Rthis paper (right panel) over the sample period.
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Figure 10: Comparison with Ebit-based measure (DP). Panel (a) plots the R2 of
the Ebit-based regression in (52) over 30 quarters (observations), ranging from the 6.25
years preceding each shock through the 4 quarters following it, which we average across
shocked stocks. The independent variable in this regression is residualized one-year-ahead
Ebit growth (∆yit+4), calculated as the log of one plus the ratio of absolute Ebit change over
the next year and current book value. The dependent variable, ∆pit, represents quarterly
abnormal log-return, in excess of the 4 Carhart (1997) factors and the 5 industry portfolios.
Residual Ebit growth is calculated following the construction in Farboodi et al. (2022) (i.e.,
regressing individual Ebit growth on market Ebit growth and a constant and recording
residuals). Panel (b) plots the 1-year moving average of the R2 in (53) implied by our
method over the quarter following the shock. The shaded areas represent economic crises
(Dotcom bubble, global financial crisis and Covid-19 pandemic).

Focus first on the left panel, which plots DP’s R2 both within the sample of shocked firms (black

solid line) and within the entire CRSP universe (red dashed line). The first conclusion is that the

sample of shocked firms, albeit noisier as it involves substantially fewer firms and the identity of

which changes from one quarter to the next, is quite representative of the CRSP sample in terms of

this R2. Now looking at the right panel (our own R2), a clear difference in magnitude and variation

is apparent. We examine these two aspects in turn.

Of course, large differences in the magnitude ofR2 are common in different asset-pricing contexts

(e.g., Roll (1988), Morck et al. (2000) or Cochrane (2011)). Therefore, it is helpful to provide a

model-implied reference for the kind of magnitude we could expect in this specific context. Following
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similar computations as those of Section 5.1.2 empiricist’s inferences relative to fundamentals follow:

F̂ c
1/4/F̃ ∼ Cauchy

(
Rthis paper,

√
Rthis paper(1− Rthis paper)

)
. (55)

The ratio of the two is precisely centered on the R2 in (53) and this R2 determines fluctuations

around it, too. We would then expect this ratio to be reasonably close to R2, and applying Fischer

Black’s conjecture to it, this would happen for R2 ≥ 0.4, the red dashed line in the right panel,

and a ten-fold magnitude of DP’s R2. While Ebit did vary over our sample period, it did not vary

enough or far enough relative to returns, which could in part explain this difference. The model

also abstracts away from elements that could reduce this R2, e.g., systematic behavioral biases

away from fundamentals or residual uncertainty (unlearnable parts in payoffs).

The difference in variation is intuitive, considering that Ebit-based regressions are intended to

capture low-frequency information. Unsurprisingly, DP’s R2 is remarkably stable. For instance, our

measure indicates that crises (shaded areas) are times of substantial drop in price informativeness,

yet such drops are virtually absent in the left panel. This smooth and stable behavior is likely due

to the lookback window we impose in our synchronization approach, as it implies a long-weighted

moving average of past returns and moving averages tend to smooth the series averaged. The point

is, the use of Ebit data, the sampling frequency it imposes and the variation it exhibits relative to

returns imply differences in the two approaches and thus in the variation they produce.

Lastly, we examine how Ebit-based measures compare to our results across characteristics. We

follow the procedure of Section 5.2, forming two subgroups for each characteristic, and taking the

median as breakpoint. We focus on differences in fundamental uncertainty and R2 in the upper

and lower panel of Table 4, respectively. In the case of DP we proxy fundamental uncertainty with

the variance of Ebit growth, and report it along with R2 for different horizons at which we compute

Ebit growth, indexed by 1 up to 3 years accordingly. The last line in each panel corresponds to our

own measure, 1/τF and Rthis paper in the upper and lower panel, respectively.

Although time-series behaviors of the two measures differ largely, they are mostly consistent

across characteristics. Focusing on the upper panel first, we see that size and liquidity, the two

main cross-sectional determinants of price informativeness in our sample, move the variance of

Ebit growth and our measure of fundamental uncertainty in the same direction. They are similarly

insensitive to analyst coverage, yet relate to value in opposite directions. Looking now at R2 in

the lower panel both measures of price informativeness appear to move consistently at all horizons,

although differences in statistical significance exist. Note that these cross-sectional directions are

different from those reported in DP. Farboodi et al. (2022) point out that trends are reverted

whether or not controls are included, which we do not. Another reason could be that our sample

differs in terms of stock selection (shocked firms) and time period (last two decades). Finally, in

unreported results we examine trends in differences across characteristics, and find that differences

across large and small firms (and to some extent liquidity) have vanished over the last decade.
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Fundamental uncertainty, Var[F̃ ]

Size Value Liquidity⊥ Coverage⊥

Var[∆Ebit]1y -0.10*** -0.08*** 0.12*** 0.00

(-5.74) (-4.57) (3.76) (0.06)

Var[∆Ebit]2y -0.14*** -0.14*** 0.18*** 0.03

(-4.59) (-5.35) (3.48) (1.13)

Var[∆Ebit]3y -0.16*** -0.20*** 0.21*** 0.06

(-3.55) (-5.33) (2.82) (1.60)

1/τF -0.14** 0.07** 0.12*** 0.03

(-2.38) (2.05) (4.07) (1.47)

Price informativeness Var[F̃ |∆P ]−1

Size Value Liquidity⊥ Coverage⊥

RDP
1y -0.19 0.33* 0.09 0.64***

(-1.10) (1.82) (0.98) (3.79)

RDP
2y -0.27** 0.16 0.21*** 0.03

(-2.53) (1.16) (2.79) (0.33)

RDP
3y -0.06 0.06 0.04 0.07

(-0.90) (0.89) (0.58) (0.62)

Rthis paper -0.14*** 0.06** 0.11*** 0.03

(-3.95) (2.18) (3.34) (1.11)

Table 4: Comparison of cross-sectional differences with Ebit-based measures.
This table shows the average cross-sectional differences in fundamental uncertainty (up-
per panel) and price informativeness (R2, lower panel) across Size, V alue, Liquidity⊥ and
Coverage⊥ in the sample of shocked stocks. In the upper panel Var[∆Ebit] is the aver-
age difference of variance in Ebit growth (dependent variable of regression (52)) between
characteristics-based portfolios. In the lower panel RDP corresponds to the difference in
the R2 of regression (52). Indices 1y, 2y and 3y correspond to the horizon that is used to
calculate Ebit growth. These measures are computed in the sample of shocked stocks over
30 quarters, ranging from 6.25 years prior to each shock through the 4 quarters following it.
For ease of comparison with Ebit-based measures, we scale them by a factor 100. The vari-
ables 1/τF and Rthis paper correspond to our own measure of fundamental uncertainty and
R2 in (53). T-statistics are shown in parentheses and are made robust to autocorrelation
and heteroskedasticity following (Newey and West, 1987) by using 5 lags. *, **, *** denote
the 10%, 5%, and 1% significance levels, respectively.
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A Appendix

A.1 Proof of Theorem 1

This appendix summarizes the main steps in Cujean (2020) and proposes an alternative

“guess-and-verify” argument regarding the derivation of equilibrium coefficients. The steps

consists in “guessing and verifying” that prices have the form:

Pt = λ1,tF̃ + (1− λ1,t)F̂
c
t + λ2,tm̃t, (56)

for t < T with λ1,t and λ2,t deterministic, equilibrium functions.

Step 1. We start by building for each individual agent the updating rule piecewise. Let

xt ≡ (F̃ , m̃t)
′ be the vector of unobservables with dynamics:

dxt =

 0 0

0 −bm

xtdt+

 0

τ
−1/2
m

 dBm,t ≡ axtdt + bdBm,t, (57)

and let:

{0 = τ0 ≤ τ1 ≤ τ2 ≤ ... ≤ τN i
T
≤ τN i

T+1 = T} (58)

be Poisson arrival times at which investor i receives new private signals, meaning activation

times of the counter N i. Consider first dates t ∈ (τk, τk+1) for k ∈ {0, ..., N i
T} when new

information flows from prices exclusively. From the conjecture in (56) and because all agents

observe empiricist’s information, ξt ≡ Pt−(1−λ1,t)F̂
c
t = λ1,tF̃+λ2,tm̃t is a sufficient statistic

for prices, and differentiating:

dξt = ( λ′
1,t λ′

2,t − bmλ2,t
)xtdt+ λ2,tτ

−1/2
m dBm,t ≡ A1,txtdt+B1,tdBm,t. (59)

Since this information is continuous posterior mean and variance, x̂i
t ≡ E[xt|F i

t ] and Oi
t ≡

V[xt|F i
t ], are updated according to a continuous-time Kalman filter:

dx̂i
t = ax̂i

tdt+ (Oi
tA

′
1,t + bB′

1,t)(B1,tB
′
1,t)

− 1
2dB̂i

t (60)

Ȯi
t = aOi

t +Oi
ta

′ + bb′ − (Oi
tA

′
1,t + bB′

1,t)(B1,tB
′
1,t)

−1(A1,tO
i
t +B′

1,tb), (61)
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where the filter innovation is:

dB̂i
t = (B1,tB

′
1,t)

− 1
2 (dξt −A1,tx̂

i
tdt). (62)

Consider now times t = τk at which agent i receives a chunk of ∆ni
t new signals, for which

the average in (6) is a sufficient statistic and which we rewrite as:

Y i
t ≡ ( 1 0 )xt + (∆ni

tτS)
−1/2ϵit ≡ A2,txt +B2,t(∆ni

t)ϵ
i
t. (63)

The updating rule in this case is a discrete-time Kalman filter:

x̂i
t = x̂i

t− +Oi
t−A

′
2,t

(
A2,tO

i
t−A

′
2,t +B2,t(∆ni)2

)−1
Ŷ i
t ≡ ωto

i
t

∆ni
t

σ2
S

Ŷ i
t (64)

Oi
t = Oi

t− −Oi
t−A

′
2,t

(
A2,tO

i
t−A

′
2,t +B2,t(∆ni)2

)−1
A2,tO

i
t− (65)

where ωt ≡ ( 1 −λ1,t/λ2,t
)′ and the filter innovation is Ŷ i

t = Y i
t − E

[
Y i
t |F i

t−,∆ni
t

]
. We

can then use observational equivalence to rewrite the variance-covariance matrix Oi
t as:

Oi
t =

 1 −λ1,t/λ2,t

−λ1,t/λ2,t (λ1,t/λ2,t)
2

 1

τ it
≡ Ωt

1

τ it
, (66)

with τ it ≡ V[F̃ |F i
t ]. Using this expression to simplify the updating rules in Eq. (60) and Eq.

(64) and putting the two pieces together the updating rule at any time satisfies (omitting

initial conditions):

dx̂i
t = ax̂i

t−dt+

 kt/τ
i
t−

τ
−1/2
m − λ1,t/λ2,tkt/τ

i
t−

 dB̂i
t + ωtτS∆ni

t/τ
i
t Ŷ

i
t dN

i
t (67)

dτ it = k2
t dt+ τS∆ni

tdN
i
t , (68)

where we define the speed at which prices reveal information as:

kt ≡ τ 1/2m

(
d

dt

(
λ1,t

λ2,t

)
+ bm

λ1,t

λ2,t

)
. (69)

Step 2. Defining ∆i ≡ F̂ i − F̂ c we show that Ψi ≡ ( ∆i m̂i )′ is Markovian and fully
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determines the way agent i perceives her investment opportunity set. Because the empiricist

only observes information from prices her views satisfy:

dx̂c
t = axc

tdt+

 kt/τ
c
t

τ
−1/2
m − λ1,t/λ2,tkt/τ

c
t

 dB̂c
t (70)

dτ ct = k2
t dt, (71)

where the filter innovation B̂c
t under F c (defined in (10)) satisfies:

dB̂c
t = (B1,tB

′
1,t)

− 1
2 (dξt −A1,tx̂

c
tdt). (72)

Define the change of probability measure between P̂c and P̂i under F i as:

Zt =
dP̂i

dP̂c

∣∣∣∣∣
F i

t

= exp

(
−1

2

∫ t

0

(ks∆
i
s)

2ds+

∫ t

0

ks∆
i
sdB̂

c
s

)
, (73)

with the two innovations B̂i and B̂c related as:

B̂i
t = B̂c

t −
∫ t

0

ks∆
i
sds, (74)

and the precisions τ it ≡ τt(n
i) and τ ct related as:

τt(n
i) = Var

[
F̃
∣∣∣F i

t ;n
i
t = ni

]−1

= τ ct +
ni

σ2
S

, (75)

τ ct = τF +

∫ t

0

k2
sds. (76)

Using (74) to express the dynamics of F̂ c under P̂i and rearranging gives:

dΨi
t =

 −k2
t /τ

c
t 0

0 −bm

Ψi
t−dt+

 ( 1
τt(ni

t−)
− 1

τct
)kt

τ
−1/2
m − λ1,t

λ2,t

kt
τt(ni

t−)

 dB̂i
t + ωt

τS
τt(ni

t)
∆ni

tŶ
i
t dN

i
t

(77)

≡ AΨ,tΨ
i
t−dt+BΨ,t(n

i
t−)dB̂

i
t +CΨ,t(n

i
t−,∆ni

t)Ŷ
i
t dN

i
t , (78)

which shows that Ψi is Markovian. To show that it determines agent i’s investment oppor-

tunity set differentiate the conjecture in (56) and substitute the relevant SDEs under F i.
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After rearranging we confirm that price paths are continuous over t ∈ (0, T ) and satisfy:

dPt = ( λ′
1,t + (1− λ1,t)

k2t
τct

λ′
2,t − bmλ2,t

)Ψi
tdt+ (λ2,tτ

−1/2
m + (1− λ1,t)/τ

c
t kt)dB̂

i
t (79)

≡ AP,tΨ
i
tdt+BP,tdB̂

i
t. (80)

At date T , however, prices jump to F̃ . Using the conjecture in (56), under F i
T− they jump

by:

∆PT = Π− PT− ≡ ( 1− λ1,T− −λ2,T− )Ψi
T− ≡ λ′

T−Ψ
i
T−, (81)

which shows that Ψi fully determines agent i’s investment opportunity set.

Step 3. Given how agents perceive their investment opportunity set, we now determine

their optimal demand, θi. Let the value function associated with (2) at time t be:

J(W i,Ψi, ni, t) =max
θi

E
[
− exp

(
−γW i

T

)∣∣F i
t ;W

i
t = W i,Ψi

t = Ψi, ni
t = ni

]
(82)

s.t. dW i
t = θitdPt. (83)

Standard arguments imply J solves the HJB equation (omitting i indices for brevity):

0 = max
θ

{
JWAPΨθ +

1

2
JWWB2

P θ
2 +BPBΨ(n)

′JWΨθ

}
+

1

2
tr(JΨΨBΨ(n)BΨ(n)

′) (84)

+ Jt + J ′
ΨAΨΨ+ η(n)ELt(Ŷ ,∆n)

[
J(W,Ψ+CΨ(n,∆n)Ŷ , n+∆n, t)− J(W,Ψ, n, t)

]
,

where η(n) denotes the intensity at which new signals accrue (as defined in Section 3.2) and

Lt denotes the joint density of the filter innovation Ŷ i
t |F i

t− ∼ N (0, 1/τ it− + (τS∆ni
t)

−1) and

∆ni
t ∼ µt (with µ satisfying (8)). Given the price discontinuity at time T , the boundary

condition is a static optimization problem of the form:

J(W,Ψ, n, T−) = max
θ

− exp

(
−γ

(
W + θT−λ

′
T−Ψ− 1

2
γθ2T−λ

′
T−ΩT−λT−/τT−

))
. (85)

Taking first-order conditions on the HJB equation and the boundary condition gives:

θit ≡ θt(Ψ
i, ni) = −JWAPΨ

i +BPBΨ(n
i)′JWΨ

JWWB2
P

(86)

θiT− =
1

γ
τT−(n)λ

⊤
T−Ψ

i. (87)
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Substituting back into the HJB equation gives (omitting i indices):

0 = Jt + J ′
ΨAΨΨ+

1

2
tr(JΨΨBΨ(n)BΨ(n)

′)− 1

2

(JWAPΨ+BPBΨ(n)
′JWΨ)

2

JWWB2
P

+ η(n)ELt(Ŷ ,∆n)
[
J(W,Ψ+ σ(n,∆n)Ŷ , n+∆n, t)− J(W,Ψ, n, t)

]
(88)

and similarly for the boundary condition:

J(W,Ψ, n, T−) = − exp

(
−γW − 1

2
τT−(n)Ψ

′ΛT−Ψ

)
. (89)

We conjecture J is of the affine-quadratic form:

J(W,Ψ, n, t) = − exp

(
−γW − ut(n)−

1

2
Ψ′Mt(n)Ψ

)
, (90)

where u and M are, respectively, scalar and 2×2−matrix coefficients to be determined. Note

there are no linear terms in Ψ because states have unconditional mean 0. Note further ut(n)

does not intervene in optimal demands and thus our focus is exclusively on Mt(n). Whereas

the quadratic conjecture can be verified in a diffusive CARA-Gaussian setup it usually fails

in a jump-diffusion setup unless jumps are restricted to the linear part (Coval and Stafford,

2007), since the conjecture in (90) would imply the jump term in the HJB equation is:

ELt(Ŷ ,∆n)

[
J(W,Ψ+CΨ(n,∆n)Ŷ , n+∆n, t)

J(W,Ψ, n, t)
− 1

]
≡ (91)

∑
m∈N

πt(m;n)
eut(n)−ut(n+m)− 1

2
Ψ′((I+Mt(n+m)Σt(n,m))−1Mt(n+m)−Mt(n))Ψ

|I+Σt(n,m)Mt(n+m)|
1
2

,

where π(·) denotes the distribution of number of new signals (as defined in Section 3.2) and

where we have defined:

Σt(n,m) ≡ Ωt
τSm

τt(n)τt(n+m)
. (92)

However, Cujean (2020) shows M satisfies the difference equation (in the n−dimension):

Mt(n) = (I+Mt(n+m)Σt(n,m))−1Mt(n+m), (93)

so that from (91) the jump in the quadratic part (in Ψ) is exactly zero and thus restricted

to the linear part (which in this case is also 0). As a result and remarkably, the quadratic
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form in (90) extends to this jump-diffusion context. In particular, plugging (90) in the HJB

equation further gives a matrix Riccati equation for M (in the t−dimension):

Ṁt(n) = −
A′

P,tAP,t

B2
P,t

+Mt(n)

(
BΨ,t(n)AP,t

BP,t

−AΨ,t

)
(94)

+

(
BΨ,t(n)AP,t

BP,t

−AΨ,t

)′

Mt(n),

subject to the boundary condition (by comparing the conjecture with (89)):

MT−(n) = τT−(n)ΛT−. (95)

Intuitively, the quadratic form persists because 1. prices have continuous sample paths they

do not covary with discontinuous bulks of signals when they arise, meaning that they do not

create a hedging demand and 2. the law of iterated expectations then implies the jump in

the value function should be a martingale. This result is the reason for which the dynamics

of information collection in Section 3.2 can be quite general (as long as they do not depend

on aggregate states). Plugging (90) in the first-order condition gives:

θt(Ψ
i, ni) =

AP −BPBΨ(n
i)′M(ni)

γB2
P

Ψi. (96)

Step 4. We now clear the stock market:∫ 1

0

θitdi = m̃t. (97)

To aggregate individual demands use the updating rule to differentiate τ iF̂ i and τ cF̂ c, sub-

stract one from the other and integrate:

τt(n
i
t)F̂

i
t = τ ct F̂

c
t +

∑
s≤t

τS∆ni
sY

i
s∆N i

s. (98)

Then plug the expression for the average private signal Y i in (6) and rearrange:

F̂ i
t =

τ ct
τt(ni

t)
F̂ c
t +

ni
tτS

τt(ni
t)
F̃ +

1

τt(ni
t)

∑
s≤t

(
τS∆ni

s

) 1
2 ϵis∆N i

s (99)
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Aggregating across agents the law of large numbers (namely, that
∫ 1

0
ϵisdi = 0) implies:∫ 1

0

F̂ i
tdi =

∑
n∈N

µt(n)((1− αt(n))F̂
c
t + αt(n)F̃ ), (100)

where αt(n) ≡ τt(n)−τct
τt(n)

is the weight Bayes’ rule assigns to F̃ in consensus beliefs. Using this

relation, the definition of Ψi and observational equivalence we conclude that:

∫ 1

0

Ψi
tdi =

∑
n∈N

µt(n)

 αt(n) 0

λ1,t

λ2,t
(1− αt(n)) 1

Ψt, (101)

where Ψt ≡ ( F̃ − F̂ c
t m̃t

)′. Plugging this aggregation result along with optimal demands

in (96) into the market-clearing condition, and separating variables gives a system of two

ODEs for the equilibrium price coefficients λ1 and λ2 :

∑
n∈N

µt(n)
AP −BPBΨ(n)

′M(n)

γB2
P

 αt(n) 0

λ1,t

λ2,t
(1− αt(n)) 1

 = ( 0 1 ). (102)

Stock market-clearing at the final date,
∫ 1

0
θiT−di = m̃T , gives associated boundary condi-

tions:

( λ1,T− λ2,T− ) = ( τT− − τ cT− −γ )
1

τT−
, (103)

which concludes the equilibrium construction and verifies the initial conjecture.

Step 5. (alternative argument) The difference and differential equations for M and the

two ODEs for λ1 and λ2 form a system of coupled equations, the solution of which represents

the equilibrium we seek. If we could guess

[TBC]

A.2 Proof of Theorem 2

Define gt ≡ 1 + aϕ′
t and rewrite the ODE in (20) accordingly:

a1/2τt = gt/σt. (104)
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Differentiating this equation once more with respect to time we get:

gt(gt − 1) = a1/2(gt/σt)
′. (105)

Introducing the following transformation next:

gt = e−
∫ t
0 σs/a1/2ds/ft, (106)

gives the following ODE for f :

(ftσt)
′ = −e−

∫ t
0 σs/a1/2dsσ2

t /a
1/2. (107)

Integrating and undoing the transformation gives:

gt =
σt/a

1/2e−
∫ t
0 σs/a1/2ds

σ0/a1/2/g0 −
∫ t

0
e−

∫ v
0 σs/a1/2dsσ2

v/adv
. (108)

Substituting the definition of gt and integrating we get:

ϕt = ϕ0 +
1

a

∫ t

0

(
σu/a

1/2e−
∫ u
0 σs/a1/2ds

σ0/a1/2/(1 + aϕ′
0)−

∫ u

0
e−

∫ v
0 σs/a1/2dsσ2

v/adv
− 1

)
du. (109)

Finally, Definition 1 gives σ0 = a−1/2(τF + ϕ0)
−1 · (1 + aϕ′

0) and using the parameter trans-

formations in (17) gives the recovery formula in (B).

To get the bounds in (22) we note that the numerator of the ratio inside the integral in (B)

is nonnegative, so a necessary condition for the expression in the integral to be nonnegative

is:

1/c >

∫ s

0

exp

(
−
∫ v

0

σu/a
1/2du

)
σ2
v/adv, ∀s ∈ [0, T ] (110)

with strict inequality for the ratio to be further finite. Since the right-hand side of the

inequality is nondecreasing in s, this inequality is satisfied at all dates s if:

1/c >

∫ T

0

exp

(
−
∫ v

0

σu/a
1/2du

)
σ2
v/adv ≡ L(a). (111)
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Furthermore, for the expression inside the integral to be nonnegative at all dates we need:

1/c ≤ exp

(
−
∫ s

0

σu/a
1/2du

)
σs/a

1/2 +

∫ s

0

exp

(
−
∫ v

0

σu/a
1/2du

)
σ2
v/adv, ∀s ∈ [0, T ],

(112)

which is satisfied at all dates if:

1/c ≤ inf
s∈[0,T ]

exp

(
−
∫ s

0

σu/a
1/2du

)
σs/a

1/2 +

∫ s

0

exp

(
−
∫ v

0

σu/a
1/2du

)
σ2
v/adv ≡ U(a).

(113)

Regarding the last part, let τ ∈ [0, T ] be the time at which the infimum in (113) is

reached and consider:

U(a)− L(a) = e−
∫ τ
0 σu/a1/2du

(
στ/a

1/2 −
∫ T

τ

e−
∫ v
τ σu/a1/2duσ2

v/adv

)
. (114)

Using that
(
e−

∫ v
τ σu/a1/2du

)′
= −e−

∫ v
τ σu/a1/2duσv/a

1/2 and integrating by parts this expression

can be simplified to:

U(a)− L(a) = e−
∫ T
0 σu/a1/2du/a1/2

(
σT −

∫ T

τ

e
∫ T
v σu/a1/2duσ′

vdv

)
. (115)

The interval in (22) becomes empty if this expression becomes negative. Note that this

expression hits zero (interval becomes a single point) when:

σT =

∫ T

τ

e
∫ T
v σu/a1/2duσ′

vdv, (116)

which corresponds to (23), and that:

lim
a→∞

U(a)− L(a) = στ ≥ 0. (117)

Hence, either (23) has no solution and by the continuity of (115) the interval is always

nonempty, or instead (23) has possibly multiple solutions, {ak}, in which case by continuity

of (115) the interval is nonempty on a ≥ maxk ak (and possibly other intervals).
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A.3 Proof of Proposition 1

We descretize the law of motion of unobservables, Ψt, over the (daily) time intervals, ∆, as:

Ψn·∆ = Ψ(n−1)·∆ +

 0

1


︸ ︷︷ ︸

≡B

ϵm,n·∆, ϵm,n·∆ ∼ N (0, τ−1
m ·∆) (118)

for n = 1, ..., N . Each day the empiricist observes a new realization of CAR:

Pn·∆ =

(
1− λ1,n·∆ 0

)
︸ ︷︷ ︸

≡Gn·∆

Ψ̂
c

n·∆ +

(
λ1,n·∆ λ2,n·∆

)
︸ ︷︷ ︸

≡Hn·∆

Ψn·∆, (119)

where we keep the notation Ψ̂
c

n·∆ ≡ E[Ψn·∆|F c
n·∆] and Oc

n·∆ ≡ V[Ψn·∆|F c
n·∆], with F c

n·∆ ≡
{Pk·∆ : k ≤ n}. Applying discrete-time Kalman filtering gives:

Ψ̂
c

n·∆ = Ψ̂
c

(n−1)·∆ (120)

+ Cov(Ψn·∆, Pn·∆|F c
(n−1)·∆)Var(Pn·∆|F c

(n−1)·∆)
−1︸ ︷︷ ︸

≡Kn·∆

(Pn·∆ − E[Pn·∆|F c
(n−1)·∆])

Oc
n·∆ = Var[Ψn·∆|F c

(n−1)·∆] (121)

− Cov[Ψn·∆, Pn·∆|F c
(n−1)·∆]Var[Ψn·∆|F c

(n−1)·∆]
−1Cov[Pn·∆,Ψn·∆|F c

(n−1)·∆].

Direct computations using discretized dynamics in (118) give:

Cov[Ψn·∆, Pn·∆|F c
(n−1)·∆] = (1−Gn·∆Kn·∆)

−1(Oc
(n−1)·∆ +QBB′)H′

n·∆ (122)

Var[Ψn·∆|F c
(n−1)·∆] = (1−Gn·∆Kn·∆)

−2(Hn·∆(O
c
(n−1)·∆ +QBB′)H′

n·∆). (123)

Plugging these expressions in the filter gain and several simplification steps give:

Kn·∆ = (1−Gn·∆Kn·∆)
−1Kn·∆, (124)

where Kn·∆ denotes the Kalman gain with respect to the sufficient price statistic (in the

empirical implementation the empiricist observes CAR as opposed to the sufficient price

statistic directly), which satisfies:

Kn·∆ = (Oc
(n−1)·∆ +QBB′)H′

n·∆(Hn·∆(O
c
(n−1)·∆ +QBB′)H′

n·∆)
−1. (125)
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From these expressions the dynamics of Kalman filter in (120) simplify to:

Ψ̂
c

n·∆ = Ψ̂
c

(n−1)·∆ +Kn·∆(Pn·∆ − (Gn·∆ +Hn·∆)Ψ̂
c

(n−1)·∆) (126)

Oc
n·∆ = (I−Kn·∆Hn·∆)(O

c
(n−1)·∆ +QBB′). (127)

We can then use observational equivalence to simplify this further to a univariate problem,

using:

Oc
n·∆ ≡

 1 −λ1,n·∆/λ2,n·∆

−λ1,n·∆/λ2,n·∆ (λ1,n·∆/λ2,n·∆)
2

 /τ cn·∆. (128)

Substituting in the dynamics in (126) and several simplifications steps give:

F̂ c
n·∆ = F̂ c

(n−1)·∆ (129)

+

τP,n·∆τ
1/2
m

λ2,n·∆τcn·∆

1 + (1− λ1,n·∆)
τP,n·∆τ

1/2
m

λ2,n·∆τcn·∆

(
Pn·∆ − F̂ c

(n−1)·∆ − λ1,n·∆

λ2,n·∆
(P(n−1)·∆ − λ1,(n−1)·∆F̂

c
(n−1)·∆)

)
1

τ cn·∆
=

1

τ c(n−1)·∆
+ τ 2P,n·∆ ·∆, (130)

where τP,n·∆ denotes the price signal-to-noise ratio:

τP,n·∆ ≡ τ 1/2m

1

∆

(
λ1,n·∆

λ2,n·∆
−

λ1,(n−1)·∆

λ2,(n−1)·∆

)
, (131)

the discrete-time equivalent to (69). Next we use the equilibrium solution for λ1,n·∆ and

λ2,n·∆, which after several simplifications steps and substituted in the above gives:

F̂ c
n·∆ =

τ c(n−1)·∆

τ cn·∆
F̂ c
(n−1)·∆ +

(
1−

τ c(n−1)·∆

τ cn·∆

)
τn·∆Pn·∆ − τ(n−1)·∆P(n−1)·∆

τn·∆ − τ(n−1)·∆
(132)

τ cn·∆ = τ c(n−1)·∆ + a

(
ϕn·∆ − ϕ(n−1)·∆

∆

)2

∆. (133)
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Diffuse priors implies initial conditions F̂ c
0 = 0 and τ c0 = τF , and after iterating over the

difference equations above we get:

F̂ c
n·∆ = 1n≥1

1

τ cn·∆

n∑
k=1

τ ck·∆ − τ c(k−1)·∆

τk·∆ − τ(k−1)·∆
(τk·∆Pk·∆ − τ(k−1)·∆P(k−1)·∆) (134)

τn·∆ = τF + a ·
n∑

k=1

(
ϕk·∆ − ϕ(k−1)·∆

∆

)2

∆, (135)

which after applying the parameter transformation in (17) gives (35) and (36), with the

average investors’ precision following from its own definition, τn·∆ ≡ τ cn·∆ + ϕn·∆.

Based on this filter the empiricist predicts the next CAR datapoint according to:

µn·∆|(n−1)·∆ = E[Pn·∆|F c
(n−1)·∆] (136)

= (Gn·∆ +Hn·∆)Ψ
c
(n−1)·∆ (137)

=

(
1− λ2,n·∆

λ2,(n−1)·∆

)
F̂ c
(n−1)·∆ +

λ2,n·∆

λ2,(n−1)·∆
P(n−1)·∆1n≥1, (138)

which using equilibrium expressions for λ1,n·∆ and λ2,n·∆ gives (34). This prediction is made

with error variance:

Σn·∆|(n−1)·∆ = Var[Pn·∆|F c
(n−1)·∆] (139)

= (1 +Gn·∆Kn·∆)
2Hn·∆(O

c
(n−1)·∆ +QBB′1n≥1)H

′
n·∆ (140)

=
(
1− τP,n·∆a

1/2
)2

λ2
2,n·∆∆/τm

τ cn·∆
τ c(n−1)·∆

(141)

=

(
τn·∆ − τ(n−1)·∆

τn·∆

)2
τ cn·∆

(τ cn·∆ − τ c(n−1)·∆)τ
c
(n−1)·∆

, (142)

where the last equality follows from substituting equilibrium expressions for λ1,n·∆ and λ2,n·∆.

From this expression we can make the claim preceding the proposition precise. In particular,

reorganizing (142) we have:

Σn·∆|(n−1)·∆

∆
=

(
τn·∆−τ(n−1)·∆

∆

τn·∆

)2
τ cn·∆

τcn·∆−τc
(n−1)·∆
∆

τ c(n−1)·∆

. (143)
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Taking limits on both sides gives:

lim
∆→0

(
Σn·∆|(n−1)·∆

∆

)1/2

= σt (144)

= τ−1
t a−1/2(1 + a · ϕ′

t), (145)

which is Definition 1 and the approximation in (31).

A.4 Descriprive Statistics

Years ∆ Market Cap ∆ log(BM) ∆ Illiq Observations

1996-2000 -174.28*** 0.18*** -2.06*** 2’396

(-2.63) (7.38) (-18.26)

2001-2005 -553.82*** 0.07*** -2.73*** 2’269

(-5.84) (2.69) (-21.71)

2006-2010 -622.17*** 0.04 -1.27*** 2’139

(-4.51) (1.43) (-6.97)

2011-2016 -967.62*** -0.02 -1.29*** 1’817

(-4.07) (-0.88) (-7.49)

2017-2022 -1’468.47*** 0.03 -0.33*** 1’857

(-4.58) (1.01) (-3.30)

Table 5: Summary statistics. This table shows the average difference in market capi-
talization, log of book-to-market ratio and illiquidity estimated by ? between the sample
of shocked firms and the rest of the CRSP stock universe. Market capitalization and book-
to-market ratios are calculated at the end of each year and lliquidity is calculated annually
using daily data. A stock that is shocked in a given year belongs the the shock sample in
this specific year, but is not included again in the following years, unless it is shocked again.
We calculate t-statistics using two-sample t-tests over five-year bins which are shown in
parentheses. We follow Levene (1960) to test whether the variances in the two samples are
equal and accordingly adjust the assumption of (un)equal variances for the t-test. *,**,***
denote 10%,5% and 1% significance levels.
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